1 | ;;;; -*- Mode: lisp -*- |
---|
2 | ;;;; |
---|
3 | ;;;; Copyright (c) 2007, 2008, 2011 Raymond Toy |
---|
4 | ;;;; |
---|
5 | ;;;; Permission is hereby granted, free of charge, to any person |
---|
6 | ;;;; obtaining a copy of this software and associated documentation |
---|
7 | ;;;; files (the "Software"), to deal in the Software without |
---|
8 | ;;;; restriction, including without limitation the rights to use, |
---|
9 | ;;;; copy, modify, merge, publish, distribute, sublicense, and/or sell |
---|
10 | ;;;; copies of the Software, and to permit persons to whom the |
---|
11 | ;;;; Software is furnished to do so, subject to the following |
---|
12 | ;;;; conditions: |
---|
13 | ;;;; |
---|
14 | ;;;; The above copyright notice and this permission notice shall be |
---|
15 | ;;;; included in all copies or substantial portions of the Software. |
---|
16 | ;;;; |
---|
17 | ;;;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
---|
18 | ;;;; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
---|
19 | ;;;; OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
---|
20 | ;;;; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
---|
21 | ;;;; HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
---|
22 | ;;;; WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
---|
23 | ;;;; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
---|
24 | ;;;; OTHER DEALINGS IN THE SOFTWARE. |
---|
25 | |
---|
26 | (in-package #:oct) |
---|
27 | |
---|
28 | (defconstant +pi+ |
---|
29 | (make-instance 'qd-real :value octi:+qd-pi+) |
---|
30 | "Pi represented as a QD-REAL") |
---|
31 | |
---|
32 | (defconstant +pi/2+ |
---|
33 | (make-instance 'qd-real :value octi:+qd-pi/2+) |
---|
34 | "Pi/2 represented as a QD-REAL") |
---|
35 | |
---|
36 | (defconstant +pi/4+ |
---|
37 | (make-instance 'qd-real :value octi:+qd-pi/4+) |
---|
38 | "Pi/4 represented as a QD-REAL") |
---|
39 | |
---|
40 | (defconstant +2pi+ |
---|
41 | (make-instance 'qd-real :value octi:+qd-2pi+) |
---|
42 | "2*pi represented as a QD-REAL") |
---|
43 | |
---|
44 | (defconstant +log2+ |
---|
45 | (make-instance 'qd-real :value octi:+qd-log2+) |
---|
46 | "Natural log of 2 represented as a QD-REAL") |
---|
47 | |
---|
48 | ;; How do we represent infinity for a QD-REAL? For now, we just make |
---|
49 | ;; the QD-REAL whose most significant part is infinity. Currently |
---|
50 | ;; only supported on CMUCL. |
---|
51 | #+cmu |
---|
52 | (defconstant +quad-double-float-positive-infinity+ |
---|
53 | (make-instance 'qd-real :value (make-qd-d ext:double-float-positive-infinity)) |
---|
54 | "One representation of positive infinity for QD-REAL") |
---|
55 | |
---|
56 | #+cmu |
---|
57 | (defconstant +quad-double-float-negative-infinity+ |
---|
58 | (make-instance 'qd-real :value (make-qd-d ext:double-float-negative-infinity)) |
---|
59 | "One representation of negative infinity for QD-REAL") |
---|
60 | |
---|
61 | (defconstant +most-positive-quad-double-float+ |
---|
62 | (make-instance 'qd-real |
---|
63 | :value (octi::%make-qd-d most-positive-double-float |
---|
64 | (cl:scale-float most-positive-double-float (cl:* 1 -53)) |
---|
65 | (cl:scale-float most-positive-double-float (cl:* 2 -53)) |
---|
66 | (cl:scale-float most-positive-double-float (cl:* 3 -53)))) |
---|
67 | "Most positive representable QD-REAL") |
---|
68 | |
---|
69 | (defconstant +least-positive-quad-double-float+ |
---|
70 | (make-instance 'qd-real |
---|
71 | :value (make-qd-d least-positive-double-float)) |
---|
72 | "Least positive QD-REAL") |
---|
73 | |
---|
74 | ;; Not sure this is 100% correct, but I think if the first component |
---|
75 | ;; is any smaller than this, the last component would no longer be a |
---|
76 | ;; normalized double-float. |
---|
77 | (defconstant +least-positive-normalized-quad-double-float+ |
---|
78 | (make-instance 'qd-real |
---|
79 | :value (make-qd-d (cl:scale-float least-positive-normalized-double-float (cl:* 3 53)))) |
---|
80 | "Least positive normalized QD-REAL") |
---|
81 | |
---|
82 | (defconstant +qd-real-one+ |
---|
83 | (make-instance 'qd-real :value (make-qd-d 1d0)) |
---|
84 | "QD-REAL representation of 1") |
---|
85 | |
---|
86 | |
---|
87 | (defmethod make-qd ((x cl:rational)) |
---|
88 | ;; We should do something better than this. |
---|
89 | (make-instance 'qd-real :value (rational-to-qd x))) |
---|
90 | |
---|
91 | |
---|
92 | (defmethod add1 ((a number)) |
---|
93 | (cl::1+ a)) |
---|
94 | |
---|
95 | (defmethod add1 ((a qd-real)) |
---|
96 | (make-instance 'qd-real :value (add-qd-d (qd-value a) 1d0))) |
---|
97 | |
---|
98 | (defmethod sub1 ((a number)) |
---|
99 | (cl::1- a)) |
---|
100 | |
---|
101 | (defmethod sub1 ((a qd-real)) |
---|
102 | (make-instance 'qd-real :value (sub-qd-d (qd-value a) 1d0))) |
---|
103 | |
---|
104 | (declaim (inline 1+ 1-)) |
---|
105 | |
---|
106 | (defun 1+ (x) |
---|
107 | (add1 x)) |
---|
108 | |
---|
109 | (defun 1- (x) |
---|
110 | (sub1 x)) |
---|
111 | |
---|
112 | (defmethod two-arg-+ ((a qd-real) (b qd-real)) |
---|
113 | (make-instance 'qd-real :value (add-qd (qd-value a) (qd-value b)))) |
---|
114 | |
---|
115 | (defmethod two-arg-+ ((a qd-real) (b cl:float)) |
---|
116 | (make-instance 'qd-real :value (add-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
117 | |
---|
118 | #+cmu |
---|
119 | (defmethod two-arg-+ ((a qd-real) (b ext:double-double-float)) |
---|
120 | (make-instance 'qd-real :value (add-qd-dd (qd-value a) b))) |
---|
121 | |
---|
122 | (defmethod two-arg-+ ((a real) (b qd-real)) |
---|
123 | (+ b a)) |
---|
124 | |
---|
125 | (defmethod two-arg-+ ((a number) (b number)) |
---|
126 | (cl:+ a b)) |
---|
127 | |
---|
128 | (defun + (&rest args) |
---|
129 | (if (null args) |
---|
130 | 0 |
---|
131 | (do ((args (cdr args) (cdr args)) |
---|
132 | (res (car args) |
---|
133 | (two-arg-+ res (car args)))) |
---|
134 | ((null args) res)))) |
---|
135 | |
---|
136 | (defmethod two-arg-- ((a qd-real) (b qd-real)) |
---|
137 | (make-instance 'qd-real :value (sub-qd (qd-value a) (qd-value b)))) |
---|
138 | |
---|
139 | (defmethod two-arg-- ((a qd-real) (b cl:float)) |
---|
140 | (make-instance 'qd-real :value (sub-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
141 | |
---|
142 | #+cmu |
---|
143 | (defmethod two-arg-- ((a qd-real) (b ext:double-double-float)) |
---|
144 | (make-instance 'qd-real :value (sub-qd-dd (qd-value a) b))) |
---|
145 | |
---|
146 | (defmethod two-arg-- ((a cl:float) (b qd-real)) |
---|
147 | (make-instance 'qd-real :value (sub-d-qd (cl:float a 1d0) (qd-value b)))) |
---|
148 | |
---|
149 | (defmethod two-arg-- ((a number) (b number)) |
---|
150 | (cl:- a b)) |
---|
151 | |
---|
152 | (defmethod unary-minus ((a number)) |
---|
153 | (cl:- a)) |
---|
154 | |
---|
155 | (defmethod unary-minus ((a qd-real)) |
---|
156 | (make-instance 'qd-real :value (neg-qd (qd-value a)))) |
---|
157 | |
---|
158 | (defun - (number &rest more-numbers) |
---|
159 | (if more-numbers |
---|
160 | (do ((nlist more-numbers (cdr nlist)) |
---|
161 | (result number)) |
---|
162 | ((atom nlist) result) |
---|
163 | (declare (list nlist)) |
---|
164 | (setq result (two-arg-- result (car nlist)))) |
---|
165 | (unary-minus number))) |
---|
166 | |
---|
167 | |
---|
168 | (defmethod two-arg-* ((a qd-real) (b qd-real)) |
---|
169 | (make-instance 'qd-real :value (mul-qd (qd-value a) (qd-value b)))) |
---|
170 | |
---|
171 | (defmethod two-arg-* ((a qd-real) (b cl:float)) |
---|
172 | (make-instance 'qd-real :value (mul-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
173 | |
---|
174 | #+cmu |
---|
175 | (defmethod two-arg-* ((a qd-real) (b ext:double-double-float)) |
---|
176 | ;; We'd normally want to use mul-qd-dd, but mul-qd-dd is broken. |
---|
177 | (make-instance 'qd-real :value (mul-qd (qd-value a) |
---|
178 | (make-qd-dd b 0w0)))) |
---|
179 | |
---|
180 | (defmethod two-arg-* ((a real) (b qd-real)) |
---|
181 | (* b a)) |
---|
182 | |
---|
183 | (defmethod two-arg-* ((a number) (b number)) |
---|
184 | (cl:* a b)) |
---|
185 | |
---|
186 | (defun * (&rest args) |
---|
187 | (if (null args) |
---|
188 | 1 |
---|
189 | (do ((args (cdr args) (cdr args)) |
---|
190 | (res (car args) |
---|
191 | (two-arg-* res (car args)))) |
---|
192 | ((null args) res)))) |
---|
193 | |
---|
194 | (defmethod two-arg-/ ((a qd-real) (b qd-real)) |
---|
195 | (make-instance 'qd-real :value (div-qd (qd-value a) (qd-value b)))) |
---|
196 | |
---|
197 | (defmethod two-arg-/ ((a qd-real) (b cl:float)) |
---|
198 | (make-instance 'qd-real :value (div-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
199 | |
---|
200 | #+cmu |
---|
201 | (defmethod two-arg-/ ((a qd-real) (b ext:double-double-float)) |
---|
202 | (make-instance 'qd-real :value (div-qd-dd (qd-value a) |
---|
203 | b))) |
---|
204 | |
---|
205 | (defmethod two-arg-/ ((a cl:float) (b qd-real)) |
---|
206 | (make-instance 'qd-real :value (div-qd (make-qd-d (cl:float a 1d0)) |
---|
207 | (qd-value b)))) |
---|
208 | |
---|
209 | #+cmu |
---|
210 | (defmethod two-arg-/ ((a ext:double-double-float) (b qd-real)) |
---|
211 | (make-instance 'qd-real :value (div-qd (make-qd-dd a 0w0) |
---|
212 | (qd-value b)))) |
---|
213 | |
---|
214 | (defmethod two-arg-/ ((a number) (b number)) |
---|
215 | (cl:/ a b)) |
---|
216 | |
---|
217 | (defmethod unary-divide ((a number)) |
---|
218 | (cl:/ a)) |
---|
219 | |
---|
220 | (defmethod unary-divide ((a qd-real)) |
---|
221 | (make-instance 'qd-real :value (div-qd +qd-one+ (qd-value a)))) |
---|
222 | |
---|
223 | (defun / (number &rest more-numbers) |
---|
224 | (if more-numbers |
---|
225 | (do ((nlist more-numbers (cdr nlist)) |
---|
226 | (result number)) |
---|
227 | ((atom nlist) result) |
---|
228 | (declare (list nlist)) |
---|
229 | (setq result (two-arg-/ result (car nlist)))) |
---|
230 | (unary-divide number))) |
---|
231 | |
---|
232 | (macrolet ((frob (name &optional (type 'real)) |
---|
233 | (let ((method-name (intern (concatenate 'string |
---|
234 | (string '#:q) |
---|
235 | (symbol-name name)))) |
---|
236 | (cl-name (intern (symbol-name name) :cl)) |
---|
237 | (qd-name (intern (concatenate 'string |
---|
238 | (symbol-name name) |
---|
239 | (string '#:-qd))))) |
---|
240 | `(progn |
---|
241 | (defmethod ,method-name ((x ,type)) |
---|
242 | (,cl-name x)) |
---|
243 | (defmethod ,method-name ((x qd-real)) |
---|
244 | (,qd-name (qd-value x))) |
---|
245 | (declaim (inline ,name)) |
---|
246 | (defun ,name (x) |
---|
247 | (,method-name x)))))) |
---|
248 | (frob zerop number) |
---|
249 | (frob plusp) |
---|
250 | (frob minusp)) |
---|
251 | |
---|
252 | (defun bignum-to-qd (bignum) |
---|
253 | (make-instance 'qd-real |
---|
254 | :value (rational-to-qd bignum))) |
---|
255 | |
---|
256 | (defmethod qfloat ((x real) (num-type cl:float)) |
---|
257 | (cl:float x num-type)) |
---|
258 | |
---|
259 | (defmethod qfloat ((x cl:float) (num-type qd-real)) |
---|
260 | (make-instance 'qd-real :value (make-qd-d (cl:float x 1d0)))) |
---|
261 | |
---|
262 | (defmethod qfloat ((x integer) (num-type qd-real)) |
---|
263 | (cond ((typep x 'fixnum) |
---|
264 | (make-instance 'qd-real :value (make-qd-d (cl:float x 1d0)))) |
---|
265 | (t |
---|
266 | ;; A bignum |
---|
267 | (bignum-to-qd x)))) |
---|
268 | |
---|
269 | #+nil |
---|
270 | (defmethod qfloat ((x ratio) (num-type qd-real)) |
---|
271 | ;; This probably has some issues with roundoff |
---|
272 | (two-arg-/ (qfloat (numerator x) num-type) |
---|
273 | (qfloat (denominator x) num-type))) |
---|
274 | |
---|
275 | (defmethod qfloat ((x ratio) (num-type qd-real)) |
---|
276 | (make-instance 'qd-real :value (rational-to-qd x))) |
---|
277 | |
---|
278 | #+cmu |
---|
279 | (defmethod qfloat ((x ext:double-double-float) (num-type qd-real)) |
---|
280 | (make-instance 'qd-real :value (make-qd-dd x 0w0))) |
---|
281 | |
---|
282 | (defmethod qfloat ((x qd-real) (num-type cl:float)) |
---|
283 | (multiple-value-bind (q0 q1 q2 q3) |
---|
284 | (qd-parts (qd-value x)) |
---|
285 | (cl:float (cl:+ q0 q1 q2 q3) num-type))) |
---|
286 | |
---|
287 | #+cmu |
---|
288 | (defmethod qfloat ((x qd-real) (num-type ext:double-double-float)) |
---|
289 | (multiple-value-bind (q0 q1 q2 q3) |
---|
290 | (qd-parts (qd-value x)) |
---|
291 | (cl:+ (cl:float q0 1w0) |
---|
292 | (cl:float q1 1w0) |
---|
293 | (cl:float q2 1w0) |
---|
294 | (cl:float q3 1w0)))) |
---|
295 | |
---|
296 | (defmethod qfloat ((x qd-real) (num-type qd-real)) |
---|
297 | x) |
---|
298 | |
---|
299 | (declaim (inline float)) |
---|
300 | (defun float (x num-type) |
---|
301 | (qfloat x num-type)) |
---|
302 | |
---|
303 | (defmethod qrealpart ((x number)) |
---|
304 | (cl:realpart x)) |
---|
305 | (defmethod qrealpart ((x qd-real)) |
---|
306 | x) |
---|
307 | (defmethod qrealpart ((x qd-complex)) |
---|
308 | (make-instance 'qd-real :value (qd-real x))) |
---|
309 | (defun realpart (x) |
---|
310 | (qrealpart x)) |
---|
311 | |
---|
312 | (defmethod qimagpart ((x number)) |
---|
313 | (cl:imagpart x)) |
---|
314 | (defmethod qimagpart ((x qd-real)) |
---|
315 | (make-qd 0d0)) |
---|
316 | (defmethod qimagpart ((x qd-complex)) |
---|
317 | (make-instance 'qd-real :value (qd-imag x))) |
---|
318 | |
---|
319 | (defun imagpart (x) |
---|
320 | (qimagpart x)) |
---|
321 | |
---|
322 | (defmethod qconjugate ((a number)) |
---|
323 | (cl:conjugate a)) |
---|
324 | |
---|
325 | (defmethod qconjugate ((a qd-real)) |
---|
326 | (make-instance 'qd-real :value (qd-value a))) |
---|
327 | |
---|
328 | (defmethod qconjugate ((a qd-complex)) |
---|
329 | (make-instance 'qd-complex |
---|
330 | :real (qd-real a) |
---|
331 | :imag (neg-qd (qd-imag a)))) |
---|
332 | |
---|
333 | (defun conjugate (z) |
---|
334 | (qconjugate z)) |
---|
335 | |
---|
336 | (defmethod qscale-float ((f cl:float) (n integer)) |
---|
337 | (cl:scale-float f n)) |
---|
338 | |
---|
339 | (defmethod qscale-float ((f qd-real) (n integer)) |
---|
340 | (make-instance 'qd-real :value (scale-float-qd (qd-value f) n))) |
---|
341 | |
---|
342 | (declaim (inline scale-float)) |
---|
343 | (defun scale-float (f n) |
---|
344 | (qscale-float f n)) |
---|
345 | |
---|
346 | (macrolet |
---|
347 | ((frob (op) |
---|
348 | (let ((method (intern (concatenate 'string |
---|
349 | (string '#:two-arg-) |
---|
350 | (symbol-name op)))) |
---|
351 | (cl-fun (find-symbol (symbol-name op) :cl)) |
---|
352 | (qd-fun (intern (concatenate 'string (string '#:qd-) (symbol-name op)) |
---|
353 | '#:octi))) |
---|
354 | `(progn |
---|
355 | (defmethod ,method ((a real) (b real)) |
---|
356 | (,cl-fun a b)) |
---|
357 | (defmethod ,method ((a qd-real) (b real)) |
---|
358 | (,qd-fun (qd-value a) (make-qd-d (cl:float b 1d0)))) |
---|
359 | (defmethod ,method ((a real) (b qd-real)) |
---|
360 | ;; This is not really right if A is a rational. We're |
---|
361 | ;; supposed to compare them as rationals. |
---|
362 | (,qd-fun (make-qd-d (cl:float a 1d0)) (qd-value b))) |
---|
363 | (defmethod ,method ((a qd-real) (b qd-real)) |
---|
364 | (,qd-fun (qd-value a) (qd-value b))) |
---|
365 | (defun ,op (number &rest more-numbers) |
---|
366 | "Returns T if its arguments are in strictly increasing order, NIL otherwise." |
---|
367 | (declare (optimize (safety 2)) |
---|
368 | (dynamic-extent more-numbers)) |
---|
369 | (do* ((n number (car nlist)) |
---|
370 | (nlist more-numbers (cdr nlist))) |
---|
371 | ((atom nlist) t) |
---|
372 | (declare (list nlist)) |
---|
373 | (if (not (,method n (car nlist))) (return nil)))))))) |
---|
374 | (frob <) |
---|
375 | (frob >) |
---|
376 | (frob <=) |
---|
377 | (frob >=)) |
---|
378 | |
---|
379 | ;; Handle the special functions for a real argument. Complex args are |
---|
380 | ;; handled elsewhere. |
---|
381 | (macrolet |
---|
382 | ((frob (name) |
---|
383 | (let ((method-name |
---|
384 | (intern (concatenate 'string (string '#:q) |
---|
385 | (symbol-name name)))) |
---|
386 | (cl-name (intern (symbol-name name) :cl)) |
---|
387 | (qd-name (intern (concatenate 'string (symbol-name name) |
---|
388 | (string '#:-qd))))) |
---|
389 | `(progn |
---|
390 | (defmethod ,name ((x number)) |
---|
391 | (,cl-name x)) |
---|
392 | (defmethod ,name ((x qd-real)) |
---|
393 | (make-instance 'qd-real :value (,qd-name (qd-value x)))))))) |
---|
394 | (frob abs) |
---|
395 | (frob exp) |
---|
396 | (frob sin) |
---|
397 | (frob cos) |
---|
398 | (frob tan) |
---|
399 | ;;(frob asin) |
---|
400 | ;;(frob acos) |
---|
401 | (frob sinh) |
---|
402 | (frob cosh) |
---|
403 | (frob tanh) |
---|
404 | (frob asinh) |
---|
405 | ;;(frob acosh) |
---|
406 | ;;(frob atanh) |
---|
407 | ) |
---|
408 | |
---|
409 | (defmethod sqrt ((x number)) |
---|
410 | (cl:sqrt x)) |
---|
411 | |
---|
412 | (defmethod sqrt ((x qd-real)) |
---|
413 | (if (minusp x) |
---|
414 | (make-instance 'qd-complex |
---|
415 | :real +qd-zero+ |
---|
416 | :imag (sqrt-qd (neg-qd (qd-value x)))) |
---|
417 | (make-instance 'qd-real :value (sqrt-qd (qd-value x))))) |
---|
418 | |
---|
419 | (defun scalb (x n) |
---|
420 | "Compute 2^N * X without compute 2^N first (use properties of the |
---|
421 | underlying floating-point format" |
---|
422 | (declare (type qd-real x)) |
---|
423 | (scale-float x n)) |
---|
424 | |
---|
425 | (declaim (inline qd-cssqs)) |
---|
426 | (defun qd-cssqs (z) |
---|
427 | (multiple-value-bind (rho k) |
---|
428 | (octi::hypot-aux-qd (qd-value (realpart z)) |
---|
429 | (qd-value (imagpart z))) |
---|
430 | (values (make-instance 'qd-real :value rho) |
---|
431 | k))) |
---|
432 | |
---|
433 | #+nil |
---|
434 | (defmethod qabs ((z qd-complex)) |
---|
435 | ;; sqrt(x^2+y^2) |
---|
436 | ;; If |x| > |y| then sqrt(x^2+y^2) = |x|*sqrt(1+(y/x)^2) |
---|
437 | (multiple-value-bind (abs^2 rho) |
---|
438 | (hypot-qd (qd-value (realpart z)) |
---|
439 | (qd-value (imagpart z))) |
---|
440 | (scale-float (make-instance 'qd-real :value (sqrt abs^2)) |
---|
441 | rho))) |
---|
442 | |
---|
443 | (defmethod abs ((z qd-complex)) |
---|
444 | ;; sqrt(x^2+y^2) |
---|
445 | ;; If |x| > |y| then sqrt(x^2+y^2) = |x|*sqrt(1+(y/x)^2) |
---|
446 | (make-instance 'qd-real |
---|
447 | :value (hypot-qd (qd-value (realpart z)) |
---|
448 | (qd-value (imagpart z))))) |
---|
449 | |
---|
450 | (defmethod log ((a number) &optional b) |
---|
451 | (if b |
---|
452 | (cl:log a b) |
---|
453 | (cl:log a))) |
---|
454 | |
---|
455 | (defmethod log ((a qd-real) &optional b) |
---|
456 | (if b |
---|
457 | (/ (log a) (log b)) |
---|
458 | (if (minusp (float-sign a)) |
---|
459 | (make-instance 'qd-complex |
---|
460 | :real (log-qd (abs-qd (qd-value a))) |
---|
461 | :imag +qd-pi+) |
---|
462 | (make-instance 'qd-real :value (log-qd (qd-value a)))))) |
---|
463 | |
---|
464 | (defmethod log1p ((a qd-real)) |
---|
465 | (make-instance 'qd-real :value (log1p-qd (qd-value a)))) |
---|
466 | |
---|
467 | (defmethod atan ((y real) &optional x) |
---|
468 | (cond (x |
---|
469 | (cond ((typep x 'qd-real) |
---|
470 | (make-instance 'qd-real |
---|
471 | :value (atan2-qd (qd-value y) (qd-value x)))) |
---|
472 | (t |
---|
473 | (cl:atan y x)))) |
---|
474 | (t |
---|
475 | (cl:atan y)))) |
---|
476 | |
---|
477 | (defmethod atan ((y qd-real) &optional x) |
---|
478 | (make-instance 'qd-real |
---|
479 | :value |
---|
480 | (if x |
---|
481 | (atan2-qd (qd-value y) (qd-value x)) |
---|
482 | (atan-qd (qd-value y))))) |
---|
483 | |
---|
484 | (defmethod qexpt ((x number) (y number)) |
---|
485 | (cl:expt x y)) |
---|
486 | |
---|
487 | (defmethod qexpt ((x qd-real) (y real)) |
---|
488 | (exp (* y (log x)))) |
---|
489 | |
---|
490 | (defmethod qexpt ((x real) (y qd-real)) |
---|
491 | (exp (* y (log x)))) |
---|
492 | |
---|
493 | (defmethod qexpt ((x qd-real) (y cl:complex)) |
---|
494 | (exp (* (make-instance 'qd-complex |
---|
495 | :real (qd-value (realpart y)) |
---|
496 | :imag (qd-value (imagpart y))) |
---|
497 | (log x)))) |
---|
498 | |
---|
499 | (defmethod qexpt ((x cl:complex) (y qd-real)) |
---|
500 | (exp (* y |
---|
501 | (log (make-instance 'qd-complex |
---|
502 | :real (qd-value (realpart x)) |
---|
503 | :imag (qd-value (imagpart x))))))) |
---|
504 | |
---|
505 | (defmethod qexpt ((x qd-real) (y qd-real)) |
---|
506 | ;; x^y = exp(y*log(x)) |
---|
507 | (exp (* y (log x)))) |
---|
508 | |
---|
509 | (defmethod qexpt ((x qd-real) (y integer)) |
---|
510 | (make-instance 'qd-real |
---|
511 | :value (npow (qd-value x) y))) |
---|
512 | |
---|
513 | (declaim (inline expt)) |
---|
514 | (defun expt (x y) |
---|
515 | (qexpt x y)) |
---|
516 | |
---|
517 | |
---|
518 | |
---|
519 | (defmethod two-arg-= ((a number) (b number)) |
---|
520 | (cl:= a b)) |
---|
521 | |
---|
522 | (defmethod two-arg-= ((a qd-real) (b number)) |
---|
523 | (if (cl:realp b) |
---|
524 | (qd-= (qd-value a) (make-qd-d (cl:float b 1d0))) |
---|
525 | nil)) |
---|
526 | |
---|
527 | (defmethod two-arg-= ((a number) (b qd-real)) |
---|
528 | (if (cl:realp a) |
---|
529 | (qd-= (make-qd-d (cl:float a 1d0)) (qd-value b)) |
---|
530 | nil)) |
---|
531 | |
---|
532 | (defmethod two-arg-= ((a qd-complex) b) |
---|
533 | (and (two-arg-= (realpart a) (realpart b)) |
---|
534 | (two-arg-= (imagpart a) (imagpart b)))) |
---|
535 | |
---|
536 | (defmethod two-arg-= (a (b qd-complex)) |
---|
537 | (and (two-arg-= (realpart a) (realpart b)) |
---|
538 | (two-arg-= (imagpart a) (imagpart b)))) |
---|
539 | |
---|
540 | |
---|
541 | (defmethod two-arg-= ((a qd-real) (b qd-real)) |
---|
542 | (qd-= (qd-value a) (qd-value b))) |
---|
543 | |
---|
544 | (defun = (number &rest more-numbers) |
---|
545 | "Returns T if all of its arguments are numerically equal, NIL otherwise." |
---|
546 | (declare (optimize (safety 2)) |
---|
547 | (dynamic-extent more-numbers)) |
---|
548 | (do ((nlist more-numbers (cdr nlist))) |
---|
549 | ((atom nlist) t) |
---|
550 | (declare (list nlist)) |
---|
551 | (if (not (two-arg-= (car nlist) number)) |
---|
552 | (return nil)))) |
---|
553 | |
---|
554 | (defun /= (number &rest more-numbers) |
---|
555 | "Returns T if no two of its arguments are numerically equal, NIL otherwise." |
---|
556 | (declare (optimize (safety 2)) |
---|
557 | (dynamic-extent more-numbers)) |
---|
558 | (do* ((head number (car nlist)) |
---|
559 | (nlist more-numbers (cdr nlist))) |
---|
560 | ((atom nlist) t) |
---|
561 | (declare (list nlist)) |
---|
562 | (unless (do* ((nl nlist (cdr nl))) |
---|
563 | ((atom nl) t) |
---|
564 | (declare (list nl)) |
---|
565 | (if (two-arg-= head (car nl)) |
---|
566 | (return nil))) |
---|
567 | (return nil)))) |
---|
568 | |
---|
569 | (defmethod qcomplex ((x real) &optional y) |
---|
570 | (cl:complex x (if y y 0))) |
---|
571 | |
---|
572 | (defmethod qcomplex ((x qd-real) &optional y) |
---|
573 | (make-instance 'qd-complex |
---|
574 | :real (qd-value x) |
---|
575 | :imag (if y (qd-value y) +qd-zero+))) |
---|
576 | |
---|
577 | (defun complex (x &optional (y 0)) |
---|
578 | (qcomplex x y)) |
---|
579 | |
---|
580 | (defmethod qinteger-decode-float ((f cl:float)) |
---|
581 | (cl:integer-decode-float f)) |
---|
582 | |
---|
583 | (defmethod qinteger-decode-float ((f qd-real)) |
---|
584 | (integer-decode-qd (qd-value f))) |
---|
585 | |
---|
586 | (declaim (inline integer-decode-float)) |
---|
587 | (defun integer-decode-float (f) |
---|
588 | (qinteger-decode-float f)) |
---|
589 | |
---|
590 | (defmethod qdecode-float ((f cl:float)) |
---|
591 | (cl:decode-float f)) |
---|
592 | |
---|
593 | (defmethod qdecode-float ((f qd-real)) |
---|
594 | (multiple-value-bind (frac exp s) |
---|
595 | (decode-float-qd (qd-value f)) |
---|
596 | (values (make-instance 'qd-real :value frac) |
---|
597 | exp |
---|
598 | (make-instance 'qd-real :value s)))) |
---|
599 | |
---|
600 | (declaim (inline decode-float)) |
---|
601 | (defun decode-float (f) |
---|
602 | (qdecode-float f)) |
---|
603 | |
---|
604 | (defmethod qfloor ((x real) &optional y) |
---|
605 | (if y |
---|
606 | (cl:floor x y) |
---|
607 | (cl:floor x))) |
---|
608 | |
---|
609 | (defmethod qfloor ((x qd-real) &optional y) |
---|
610 | (if (and y (/= y 1)) |
---|
611 | (let ((f (qfloor (/ x y)))) |
---|
612 | (values f |
---|
613 | (- x (* f y)))) |
---|
614 | (let ((f (ffloor-qd (qd-value x)))) |
---|
615 | (multiple-value-bind (int exp sign) |
---|
616 | (integer-decode-qd f) |
---|
617 | (values (ash (* sign int) exp) |
---|
618 | (make-instance 'qd-real |
---|
619 | :value (qd-value |
---|
620 | (- x (make-instance 'qd-real |
---|
621 | :value f))))))))) |
---|
622 | |
---|
623 | (defun floor (x &optional y) |
---|
624 | (qfloor x y)) |
---|
625 | |
---|
626 | (defmethod qffloor ((x real) &optional y) |
---|
627 | (if y |
---|
628 | (cl:ffloor x y) |
---|
629 | (cl:ffloor x))) |
---|
630 | |
---|
631 | (defmethod qffloor ((x qd-real) &optional y) |
---|
632 | (if (and y (/= y 1)) |
---|
633 | (let ((f (qffloor (/ x y)))) |
---|
634 | (values f |
---|
635 | (- x (* f y)))) |
---|
636 | (let ((f (make-instance 'qd-real :value (ffloor-qd (qd-value x))))) |
---|
637 | (values f |
---|
638 | (- x f))))) |
---|
639 | |
---|
640 | (defun ffloor (x &optional y) |
---|
641 | (qffloor x y)) |
---|
642 | |
---|
643 | (defun ceiling (x &optional y) |
---|
644 | (multiple-value-bind (f rem) |
---|
645 | (floor x y) |
---|
646 | (if (zerop rem) |
---|
647 | (values (+ f 1) |
---|
648 | rem) |
---|
649 | (values (+ f 1) |
---|
650 | (- rem 1))))) |
---|
651 | |
---|
652 | (defun fceiling (x &optional y) |
---|
653 | (multiple-value-bind (f rem) |
---|
654 | (ffloor x y) |
---|
655 | (if (zerop rem) |
---|
656 | (values (+ f 1) |
---|
657 | rem) |
---|
658 | (values (+ f 1) |
---|
659 | (- rem 1))))) |
---|
660 | |
---|
661 | (defun truncate (x &optional (y 1)) |
---|
662 | (if (minusp x) |
---|
663 | (ceiling x y) |
---|
664 | (floor x y))) |
---|
665 | |
---|
666 | (defun ftruncate (x &optional (y 1)) |
---|
667 | (if (minusp x) |
---|
668 | (fceiling x y) |
---|
669 | (ffloor x y))) |
---|
670 | |
---|
671 | (defmethod %unary-round ((x real)) |
---|
672 | (cl::round x)) |
---|
673 | |
---|
674 | (defmethod %unary-round ((number qd-real)) |
---|
675 | (multiple-value-bind (bits exp) |
---|
676 | (integer-decode-float number) |
---|
677 | (let* ((shifted (ash bits exp)) |
---|
678 | (rounded (if (and (minusp exp) |
---|
679 | (oddp shifted) |
---|
680 | (not (zerop (logand bits |
---|
681 | (ash 1 (- -1 exp)))))) |
---|
682 | (1+ shifted) |
---|
683 | shifted))) |
---|
684 | (if (minusp number) |
---|
685 | (- rounded) |
---|
686 | rounded)))) |
---|
687 | |
---|
688 | (defun round (number &optional (divisor 1)) |
---|
689 | (if (eql divisor 1) |
---|
690 | (let ((r (%unary-round number))) |
---|
691 | (values r |
---|
692 | (- number r))) |
---|
693 | (multiple-value-bind (tru rem) |
---|
694 | (truncate number divisor) |
---|
695 | (if (zerop rem) |
---|
696 | (values tru rem) |
---|
697 | (let ((thresh (/ (abs divisor) 2))) |
---|
698 | (cond ((or (> rem thresh) |
---|
699 | (and (= rem thresh) (oddp tru))) |
---|
700 | (if (minusp divisor) |
---|
701 | (values (- tru 1) (+ rem divisor)) |
---|
702 | (values (+ tru 1) (- rem divisor)))) |
---|
703 | ((let ((-thresh (- thresh))) |
---|
704 | (or (< rem -thresh) |
---|
705 | (and (= rem -thresh) (oddp tru)))) |
---|
706 | (if (minusp divisor) |
---|
707 | (values (+ tru 1) (- rem divisor)) |
---|
708 | (values (- tru 1) (+ rem divisor)))) |
---|
709 | (t (values tru rem)))))))) |
---|
710 | |
---|
711 | (defun fround (number &optional (divisor 1)) |
---|
712 | "Same as ROUND, but returns first value as a float." |
---|
713 | (multiple-value-bind (res rem) |
---|
714 | (round number divisor) |
---|
715 | (values (float res (if (floatp rem) rem 1.0)) rem))) |
---|
716 | |
---|
717 | (defmethod qfloat-sign ((a real) &optional (f (float 1 a))) |
---|
718 | (cl:float-sign a f)) |
---|
719 | |
---|
720 | |
---|
721 | (defmethod qfloat-sign ((a qd-real) &optional f) |
---|
722 | (if f |
---|
723 | (make-instance 'qd-real |
---|
724 | :value (mul-qd-d (abs-qd (qd-value f)) |
---|
725 | (cl:float-sign (qd-0 (qd-value a))))) |
---|
726 | (make-instance 'qd-real :value (make-qd-d (cl:float-sign (qd-0 (qd-value a))))))) |
---|
727 | |
---|
728 | (declaim (inline float-sign)) |
---|
729 | (defun float-sign (n &optional (float2 nil float2p)) |
---|
730 | (if float2p |
---|
731 | (qfloat-sign n float2) |
---|
732 | (qfloat-sign n))) |
---|
733 | |
---|
734 | (defun max (number &rest more-numbers) |
---|
735 | "Returns the greatest of its arguments." |
---|
736 | (declare (optimize (safety 2)) (type (or real qd-real) number) |
---|
737 | (dynamic-extent more-numbers)) |
---|
738 | (dolist (real more-numbers) |
---|
739 | (when (> real number) |
---|
740 | (setq number real))) |
---|
741 | number) |
---|
742 | |
---|
743 | (defun min (number &rest more-numbers) |
---|
744 | "Returns the least of its arguments." |
---|
745 | (declare (optimize (safety 2)) (type (or real qd-real) number) |
---|
746 | (dynamic-extent more-numbers)) |
---|
747 | (do ((nlist more-numbers (cdr nlist)) |
---|
748 | (result (the (or real qd-real) number))) |
---|
749 | ((null nlist) (return result)) |
---|
750 | (declare (list nlist)) |
---|
751 | (if (< (car nlist) result) |
---|
752 | (setq result (car nlist))))) |
---|
753 | |
---|
754 | (defmethod asin ((x number)) |
---|
755 | (cl:asin x)) |
---|
756 | |
---|
757 | (defmethod asin ((x qd-real)) |
---|
758 | (if (<= -1 x 1) |
---|
759 | (make-instance 'qd-real :value (asin-qd (qd-value x))) |
---|
760 | (qd-complex-asin x))) |
---|
761 | |
---|
762 | (defmethod acos ((x number)) |
---|
763 | (cl:acos x)) |
---|
764 | |
---|
765 | (defmethod acos ((x qd-real)) |
---|
766 | (cond ((> (abs x) 1) |
---|
767 | (qd-complex-acos x)) |
---|
768 | (t |
---|
769 | (make-instance 'qd-real :value (acos-qd (qd-value x)))))) |
---|
770 | |
---|
771 | (defmethod acosh ((x number)) |
---|
772 | (cl:acosh x)) |
---|
773 | |
---|
774 | (defmethod acosh ((x qd-real)) |
---|
775 | (if (< x 1) |
---|
776 | (qd-complex-acosh x) |
---|
777 | (make-instance 'qd-real :value (acosh-qd (qd-value x))))) |
---|
778 | |
---|
779 | (defmethod atanh ((x number)) |
---|
780 | (cl:atanh x)) |
---|
781 | |
---|
782 | (defmethod atanh ((x qd-real)) |
---|
783 | (if (> (abs x) 1) |
---|
784 | (qd-complex-atanh x) |
---|
785 | (make-instance 'qd-real :value (atanh-qd (qd-value x))))) |
---|
786 | |
---|
787 | (defmethod cis ((x real)) |
---|
788 | (cl:cis x)) |
---|
789 | |
---|
790 | (defmethod cis ((x qd-real)) |
---|
791 | (multiple-value-bind (s c) |
---|
792 | (sincos-qd (qd-value x)) |
---|
793 | (make-instance 'qd-complex |
---|
794 | :real c |
---|
795 | :imag s))) |
---|
796 | |
---|
797 | (defmethod phase ((x number)) |
---|
798 | (cl:phase x)) |
---|
799 | |
---|
800 | (defmethod phase ((x qd-real)) |
---|
801 | (if (minusp x) |
---|
802 | (- +pi+) |
---|
803 | (make-instance 'qd-real :value (make-qd-d 0d0)))) |
---|
804 | |
---|
805 | (defun signum (number) |
---|
806 | "If NUMBER is zero, return NUMBER, else return (/ NUMBER (ABS NUMBER))." |
---|
807 | (if (zerop number) |
---|
808 | number |
---|
809 | (if (rationalp number) |
---|
810 | (if (plusp number) 1 -1) |
---|
811 | (/ number (abs number))))) |
---|
812 | |
---|
813 | (defmethod random ((x cl:real) &optional (state *random-state*)) |
---|
814 | (cl:random x state)) |
---|
815 | |
---|
816 | (defmethod random ((x qd-real) &optional (state *random-state*)) |
---|
817 | (* x (make-instance 'qd-real |
---|
818 | :value (octi:random-qd state)))) |
---|
819 | |
---|
820 | (defmethod float-digits ((x cl:real)) |
---|
821 | (cl:float-digits x)) |
---|
822 | |
---|
823 | (defmethod float-digits ((x qd-real)) |
---|
824 | (* 4 (float-digits 1d0))) |
---|
825 | |
---|
826 | (defmethod rational ((x real)) |
---|
827 | (cl:rational x)) |
---|
828 | |
---|
829 | (defmethod rational ((x qd-real)) |
---|
830 | (with-qd-parts (x0 x1 x2 x3) |
---|
831 | (qd-value x) |
---|
832 | (+ (cl:rational x0) |
---|
833 | (cl:rational x1) |
---|
834 | (cl:rational x2) |
---|
835 | (cl:rational x3)))) |
---|
836 | |
---|
837 | (defmethod rationalize ((x cl:real)) |
---|
838 | (cl:rationalize x)) |
---|
839 | |
---|
840 | ;;; The algorithm here is the method described in CLISP. Bruno Haible has |
---|
841 | ;;; graciously given permission to use this algorithm. He says, "You can use |
---|
842 | ;;; it, if you present the following explanation of the algorithm." |
---|
843 | ;;; |
---|
844 | ;;; Algorithm (recursively presented): |
---|
845 | ;;; If x is a rational number, return x. |
---|
846 | ;;; If x = 0.0, return 0. |
---|
847 | ;;; If x < 0.0, return (- (rationalize (- x))). |
---|
848 | ;;; If x > 0.0: |
---|
849 | ;;; Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, |
---|
850 | ;;; exponent, sign). |
---|
851 | ;;; If m = 0 or e >= 0: return x = m*2^e. |
---|
852 | ;;; Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e |
---|
853 | ;;; with smallest possible numerator and denominator. |
---|
854 | ;;; Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. |
---|
855 | ;;; But in this case the result will be x itself anyway, regardless of |
---|
856 | ;;; the choice of a. Therefore we can simply ignore this case. |
---|
857 | ;;; Note 2: At first, we need to consider the closed interval [a,b]. |
---|
858 | ;;; but since a and b have the denominator 2^(|e|+1) whereas x itself |
---|
859 | ;;; has a denominator <= 2^|e|, we can restrict the seach to the open |
---|
860 | ;;; interval (a,b). |
---|
861 | ;;; So, for given a and b (0 < a < b) we are searching a rational number |
---|
862 | ;;; y with a <= y <= b. |
---|
863 | ;;; Recursive algorithm fraction_between(a,b): |
---|
864 | ;;; c := (ceiling a) |
---|
865 | ;;; if c < b |
---|
866 | ;;; then return c ; because a <= c < b, c integer |
---|
867 | ;;; else |
---|
868 | ;;; ; a is not integer (otherwise we would have had c = a < b) |
---|
869 | ;;; k := c-1 ; k = floor(a), k < a < b <= k+1 |
---|
870 | ;;; return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) |
---|
871 | ;;; ; note 1 <= 1/(b-k) < 1/(a-k) |
---|
872 | ;;; |
---|
873 | ;;; You can see that we are actually computing a continued fraction expansion. |
---|
874 | ;;; |
---|
875 | ;;; Algorithm (iterative): |
---|
876 | ;;; If x is rational, return x. |
---|
877 | ;;; Call (integer-decode-float x). It returns a m,e,s (mantissa, |
---|
878 | ;;; exponent, sign). |
---|
879 | ;;; If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) |
---|
880 | ;;; Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) |
---|
881 | ;;; (positive and already in lowest terms because the denominator is a |
---|
882 | ;;; power of two and the numerator is odd). |
---|
883 | ;;; Start a continued fraction expansion |
---|
884 | ;;; p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. |
---|
885 | ;;; Loop |
---|
886 | ;;; c := (ceiling a) |
---|
887 | ;;; if c >= b |
---|
888 | ;;; then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), |
---|
889 | ;;; goto Loop |
---|
890 | ;;; finally partial_quotient(c). |
---|
891 | ;;; Here partial_quotient(c) denotes the iteration |
---|
892 | ;;; i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. |
---|
893 | ;;; At the end, return s * (p[i]/q[i]). |
---|
894 | ;;; This rational number is already in lowest terms because |
---|
895 | ;;; p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. |
---|
896 | ;;; |
---|
897 | (defmethod rationalize ((x qd-real)) |
---|
898 | ;; This is a fairly straigtforward implementation of the iterative |
---|
899 | ;; algorithm above. |
---|
900 | (multiple-value-bind (frac expo sign) |
---|
901 | (integer-decode-float x) |
---|
902 | (cond ((or (zerop frac) (>= expo 0)) |
---|
903 | (if (minusp sign) |
---|
904 | (- (ash frac expo)) |
---|
905 | (ash frac expo))) |
---|
906 | (t |
---|
907 | ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e), |
---|
908 | ;; so build the fraction up immediately, without having to do |
---|
909 | ;; a gcd. |
---|
910 | (let ((a (/ (- (* 2 frac) 1) (ash 1 (- 1 expo)))) |
---|
911 | (b (/ (+ (* 2 frac) 1) (ash 1 (- 1 expo)))) |
---|
912 | (p0 0) |
---|
913 | (q0 1) |
---|
914 | (p1 1) |
---|
915 | (q1 0)) |
---|
916 | (do ((c (ceiling a) (ceiling a))) |
---|
917 | ((< c b) |
---|
918 | (let ((top (+ (* c p1) p0)) |
---|
919 | (bot (+ (* c q1) q0))) |
---|
920 | (/ (if (minusp sign) |
---|
921 | (- top) |
---|
922 | top) |
---|
923 | bot))) |
---|
924 | (let* ((k (- c 1)) |
---|
925 | (p2 (+ (* k p1) p0)) |
---|
926 | (q2 (+ (* k q1) q0))) |
---|
927 | (psetf a (/ (- b k)) |
---|
928 | b (/ (- a k))) |
---|
929 | (setf p0 p1 |
---|
930 | q0 q1 |
---|
931 | p1 p2 |
---|
932 | q1 q2)))))))) |
---|
933 | |
---|
934 | (define-compiler-macro + (&whole form &rest args) |
---|
935 | (declare (ignore form)) |
---|
936 | (if (null args) |
---|
937 | 0 |
---|
938 | (do ((args (cdr args) (cdr args)) |
---|
939 | (res (car args) |
---|
940 | `(two-arg-+ ,res ,(car args)))) |
---|
941 | ((null args) res)))) |
---|
942 | |
---|
943 | (define-compiler-macro - (&whole form number &rest more-numbers) |
---|
944 | (declare (ignore form)) |
---|
945 | (if more-numbers |
---|
946 | (do ((nlist more-numbers (cdr nlist)) |
---|
947 | (result number)) |
---|
948 | ((atom nlist) result) |
---|
949 | (declare (list nlist)) |
---|
950 | (setq result `(two-arg-- ,result ,(car nlist)))) |
---|
951 | `(unary-minus ,number))) |
---|
952 | |
---|
953 | (define-compiler-macro * (&whole form &rest args) |
---|
954 | (declare (ignore form)) |
---|
955 | (if (null args) |
---|
956 | 1 |
---|
957 | (do ((args (cdr args) (cdr args)) |
---|
958 | (res (car args) |
---|
959 | `(two-arg-* ,res ,(car args)))) |
---|
960 | ((null args) res)))) |
---|
961 | |
---|
962 | (define-compiler-macro / (number &rest more-numbers) |
---|
963 | (if more-numbers |
---|
964 | (do ((nlist more-numbers (cdr nlist)) |
---|
965 | (result number)) |
---|
966 | ((atom nlist) result) |
---|
967 | (declare (list nlist)) |
---|
968 | (setq result `(two-arg-/ ,result ,(car nlist)))) |
---|
969 | `(unary-divide ,number))) |
---|
970 | |
---|
971 | ;; Compiler macros to convert <, >, <=, and >= into multiple calls of |
---|
972 | ;; the corresponding two-arg-<foo> function. |
---|
973 | (macrolet |
---|
974 | ((frob (op) |
---|
975 | (let ((method (intern (concatenate 'string |
---|
976 | (string '#:two-arg-) |
---|
977 | (symbol-name op))))) |
---|
978 | `(define-compiler-macro ,op (number &rest more-numbers) |
---|
979 | (do* ((n number (car nlist)) |
---|
980 | (nlist more-numbers (cdr nlist)) |
---|
981 | (res nil)) |
---|
982 | ((atom nlist) |
---|
983 | `(and ,@(nreverse res))) |
---|
984 | (push `(,',method ,n ,(car nlist)) res)))))) |
---|
985 | (frob <) |
---|
986 | (frob >) |
---|
987 | (frob <=) |
---|
988 | (frob >=)) |
---|
989 | |
---|
990 | (define-compiler-macro /= (&whole form number &rest more-numbers) |
---|
991 | ;; Convert (/= x y) to (not (two-arg-= x y)). Should we try to |
---|
992 | ;; handle a few more cases? |
---|
993 | (if (cdr more-numbers) |
---|
994 | form |
---|
995 | `(not (two-arg-= ,number ,(car more-numbers))))) |
---|
996 | |
---|
997 | |
---|
998 | ;; Define compiler macro the convert two-arg-foo into the appropriate |
---|
999 | ;; CL function or QD-REAL function so we don't have to do CLOS |
---|
1000 | ;; dispatch. |
---|
1001 | #+(or) |
---|
1002 | (macrolet |
---|
1003 | ((frob (name cl-op qd-op) |
---|
1004 | `(define-compiler-macro ,name (&whole form x y &environment env) |
---|
1005 | (flet ((arg-type (arg) |
---|
1006 | (multiple-value-bind (def-type localp decl) |
---|
1007 | (ext:variable-information arg env) |
---|
1008 | (declare (ignore localp)) |
---|
1009 | (when def-type |
---|
1010 | (cdr (assoc 'type decl)))))) |
---|
1011 | (let ((x-type (arg-type x)) |
---|
1012 | (y-type (arg-type y))) |
---|
1013 | (cond ((and (subtypep x-type 'cl:number) |
---|
1014 | (subtypep y-type 'cl:number)) |
---|
1015 | `(,',cl-op ,x ,y)) |
---|
1016 | ((and (subtypep x-type 'qd-real) |
---|
1017 | (subtypep y-type 'qd-real)) |
---|
1018 | `(make-instance 'qd-real :value (,',qd-op (qd-value ,x) |
---|
1019 | (qd-value ,y)))) |
---|
1020 | (t |
---|
1021 | ;; Don't know how to handle this, so give up. |
---|
1022 | form))))))) |
---|
1023 | (frob two-arg-+ cl:+ add-qd) |
---|
1024 | (frob two-arg-- cl:- sub-qd) |
---|
1025 | (frob two-arg-* cl:* mul-qd) |
---|
1026 | (frob two-arg-/ cl:/ div-qd)) |
---|
1027 | |
---|
1028 | #+(or) |
---|
1029 | (macrolet |
---|
1030 | ((frob (name cl-op qd-op cl-qd-op qd-cl-op) |
---|
1031 | `(define-compiler-macro ,name (&whole form x y &environment env) |
---|
1032 | (flet ((arg-type (arg) |
---|
1033 | (multiple-value-bind (def-type localp decl) |
---|
1034 | (ext:variable-information arg env) |
---|
1035 | (declare (ignore localp)) |
---|
1036 | (when def-type |
---|
1037 | (cdr (assoc 'type decl)))))) |
---|
1038 | (let ((x-type (arg-type x)) |
---|
1039 | (y-type (arg-type y))) |
---|
1040 | (cond ((subtypep x-type 'cl:float) |
---|
1041 | (cond ((subtypep y-type 'cl:number) |
---|
1042 | `(,',cl-op ,x ,y)) |
---|
1043 | ((subtypep y-type 'qd-real) |
---|
1044 | (if ,cl-qd-op |
---|
1045 | `(make-instance 'qd-real :value (,',cl-qd-op (cl:float ,x 1d0) |
---|
1046 | (qd-value ,y))) |
---|
1047 | form)) |
---|
1048 | (t form))) |
---|
1049 | ((subtypep x-type 'qd-real) |
---|
1050 | (cond ((subtypep y-type 'cl:float) |
---|
1051 | (if ,qd-cl-op |
---|
1052 | `(make-instance 'qd-real :value (,',qd-cl-op (qd-value ,x) |
---|
1053 | (float ,y 1d0))) |
---|
1054 | form)) |
---|
1055 | ((subtypep y-type 'qd-real) |
---|
1056 | `(make-instance 'qd-real :value (,',qd-op (qd-value ,x) |
---|
1057 | (qd-value ,y)))) |
---|
1058 | (t form))) |
---|
1059 | (t |
---|
1060 | ;; Don't know how to handle this, so give up. |
---|
1061 | form))))))) |
---|
1062 | (frob two-arg-+ cl:+ add-qd add-d-qd add-qd-d) |
---|
1063 | (frob two-arg-- cl:- sub-qd sub-d-qd sub-qd-d) |
---|
1064 | (frob two-arg-* cl:* mul-qd mul-d-qd mul-qd-d) |
---|
1065 | (frob two-arg-/ cl:/ div-qd nil nil)) |
---|
1066 | |
---|
1067 | |
---|
1068 | (defun read-qd-real-or-complex (stream) |
---|
1069 | (let ((c (peek-char t stream))) |
---|
1070 | (cond ((char= c #\() |
---|
1071 | ;; Read a QD complex |
---|
1072 | (read-char stream) ; Skip the paren |
---|
1073 | (let ((real (read stream t nil t)) |
---|
1074 | (imag (read stream t nil t))) |
---|
1075 | (unless (char= (peek-char t stream) #\)) |
---|
1076 | (error "Illegal QD-COMPLEX number format")) |
---|
1077 | ;; Read closing paren |
---|
1078 | (read-char stream) |
---|
1079 | (make-instance 'qd-complex |
---|
1080 | :real (qd-value (float real +qd-real-one+)) |
---|
1081 | :imag (qd-value (float imag +qd-real-one+))))) |
---|
1082 | (t |
---|
1083 | (make-instance 'qd-real :value (read-qd stream)))))) |
---|
1084 | |
---|
1085 | (defun qd-class-reader (stream subchar arg) |
---|
1086 | (declare (ignore subchar)) |
---|
1087 | (when arg |
---|
1088 | (warn "Numeric argument ignored in #~DQ" arg)) |
---|
1089 | (read-qd-real-or-complex stream)) |
---|
1090 | |
---|
1091 | ;; Yow! We redefine the #q reader that is in qd-io.lisp to read in |
---|
1092 | ;; and make a real qd-real float, instead of the hackish |
---|
1093 | ;; %qd-real. |
---|
1094 | (set-dispatch-macro-character #\# #\Q #'qd-class-reader) |
---|
1095 | |
---|
1096 | |
---|
1097 | (defmethod epsilon ((m cl:float)) |
---|
1098 | (etypecase m |
---|
1099 | (single-float single-float-epsilon) |
---|
1100 | (double-float double-float-epsilon))) |
---|
1101 | |
---|
1102 | (defmethod epsilon ((m cl:complex)) |
---|
1103 | (epsilon (realpart m))) |
---|
1104 | |
---|
1105 | (defmethod epsilon ((m qd-real)) |
---|
1106 | ;; What is the epsilon value for a quad-double? This is complicated |
---|
1107 | ;; by the fact that things like (+ #q1 #q1q-100) is representable as |
---|
1108 | ;; a quad-double. For most purposes we want epsilon to be close to |
---|
1109 | ;; the 212 bits of precision (4*53 bits) that we normally have with |
---|
1110 | ;; a quad-double. |
---|
1111 | (scale-float (make-qd-d 1d0) -212)) |
---|
1112 | |
---|
1113 | (defmethod epsilon ((m qd-complex)) |
---|
1114 | (epsilon (realpart m))) |
---|