1 | ;;;; -*- Mode: lisp -*- |
---|
2 | ;;;; |
---|
3 | ;;;; Copyright (c) 2007, 2008, 2011 Raymond Toy |
---|
4 | ;;;; |
---|
5 | ;;;; Permission is hereby granted, free of charge, to any person |
---|
6 | ;;;; obtaining a copy of this software and associated documentation |
---|
7 | ;;;; files (the "Software"), to deal in the Software without |
---|
8 | ;;;; restriction, including without limitation the rights to use, |
---|
9 | ;;;; copy, modify, merge, publish, distribute, sublicense, and/or sell |
---|
10 | ;;;; copies of the Software, and to permit persons to whom the |
---|
11 | ;;;; Software is furnished to do so, subject to the following |
---|
12 | ;;;; conditions: |
---|
13 | ;;;; |
---|
14 | ;;;; The above copyright notice and this permission notice shall be |
---|
15 | ;;;; included in all copies or substantial portions of the Software. |
---|
16 | ;;;; |
---|
17 | ;;;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
---|
18 | ;;;; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
---|
19 | ;;;; OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
---|
20 | ;;;; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
---|
21 | ;;;; HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
---|
22 | ;;;; WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
---|
23 | ;;;; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
---|
24 | ;;;; OTHER DEALINGS IN THE SOFTWARE. |
---|
25 | |
---|
26 | (in-package #:oct) |
---|
27 | |
---|
28 | (defmethod make-qd ((x cl:rational)) |
---|
29 | ;; We should do something better than this. |
---|
30 | (make-instance 'qd-real :value (rational-to-qd x))) |
---|
31 | |
---|
32 | ;; Determine which of x and y has the higher precision and return the |
---|
33 | ;; value of the higher precision number. If both x and y are |
---|
34 | ;; rationals, just return 1f0, for a single-float value. |
---|
35 | (defun float-contagion-2 (x y) |
---|
36 | (etypecase x |
---|
37 | (cl:rational |
---|
38 | (etypecase y |
---|
39 | (cl:rational |
---|
40 | 1f0) |
---|
41 | (cl:float |
---|
42 | y) |
---|
43 | (qd-real |
---|
44 | y))) |
---|
45 | (single-float |
---|
46 | (etypecase y |
---|
47 | ((or cl:rational single-float) |
---|
48 | x) |
---|
49 | ((or double-float qd-real) |
---|
50 | y))) |
---|
51 | (double-float |
---|
52 | (etypecase y |
---|
53 | ((or cl:rational single-float double-float) |
---|
54 | x) |
---|
55 | (qd-real |
---|
56 | y))) |
---|
57 | (qd-real |
---|
58 | x))) |
---|
59 | |
---|
60 | ;; Return a floating point (or complex) type of the highest precision |
---|
61 | ;; among all of the given arguments. |
---|
62 | (defun float-contagion (&rest args) |
---|
63 | ;; It would be easy if we could just add the args together and let |
---|
64 | ;; normal contagion do the work, but we could easily introduce |
---|
65 | ;; overflows or other errors that way. So look at each argument and |
---|
66 | ;; determine the precision and choose the highest precision. |
---|
67 | (etypecase (reduce #'float-contagion-2 (mapcar #'realpart (if (cdr args) |
---|
68 | args |
---|
69 | (list (car args) 0)))) |
---|
70 | (single-float 'single-float) |
---|
71 | (double-float 'double-float) |
---|
72 | (qd-real 'qd-real))) |
---|
73 | |
---|
74 | (defun apply-contagion (number precision) |
---|
75 | (etypecase number |
---|
76 | ((or cl:real qd-real) |
---|
77 | (coerce number precision)) |
---|
78 | ((or cl:complex qd-complex) |
---|
79 | (complex (coerce (realpart number) precision) |
---|
80 | (coerce (imagpart number) precision))))) |
---|
81 | |
---|
82 | ;; WITH-FLOATING-POINT-CONTAGION - macro |
---|
83 | ;; |
---|
84 | ;; Determines the highest precision of the variables in VARLIST and |
---|
85 | ;; converts each of the values to that precision. |
---|
86 | (defmacro with-floating-point-contagion (varlist &body body) |
---|
87 | (let ((precision (gensym "PRECISION-"))) |
---|
88 | `(let ((,precision (float-contagion ,@varlist))) |
---|
89 | (let (,@(mapcar #'(lambda (v) |
---|
90 | `(,v (apply-contagion ,v ,precision))) |
---|
91 | varlist)) |
---|
92 | ,@body)))) |
---|
93 | |
---|
94 | (defmethod add1 ((a number)) |
---|
95 | (cl::1+ a)) |
---|
96 | |
---|
97 | (defmethod add1 ((a qd-real)) |
---|
98 | (make-instance 'qd-real :value (add-qd-d (qd-value a) 1d0))) |
---|
99 | |
---|
100 | (defmethod sub1 ((a number)) |
---|
101 | (cl::1- a)) |
---|
102 | |
---|
103 | (defmethod sub1 ((a qd-real)) |
---|
104 | (make-instance 'qd-real :value (sub-qd-d (qd-value a) 1d0))) |
---|
105 | |
---|
106 | (declaim (inline 1+ 1-)) |
---|
107 | |
---|
108 | (defun 1+ (x) |
---|
109 | (add1 x)) |
---|
110 | |
---|
111 | (defun 1- (x) |
---|
112 | (sub1 x)) |
---|
113 | |
---|
114 | (defmethod two-arg-+ ((a qd-real) (b qd-real)) |
---|
115 | (make-instance 'qd-real :value (add-qd (qd-value a) (qd-value b)))) |
---|
116 | |
---|
117 | (defmethod two-arg-+ ((a qd-real) (b cl:float)) |
---|
118 | (make-instance 'qd-real :value (add-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
119 | |
---|
120 | #+cmu |
---|
121 | (defmethod two-arg-+ ((a qd-real) (b ext:double-double-float)) |
---|
122 | (make-instance 'qd-real :value (add-qd-dd (qd-value a) b))) |
---|
123 | |
---|
124 | (defmethod two-arg-+ ((a real) (b qd-real)) |
---|
125 | (+ b a)) |
---|
126 | |
---|
127 | (defmethod two-arg-+ ((a number) (b number)) |
---|
128 | (cl:+ a b)) |
---|
129 | |
---|
130 | (defun + (&rest args) |
---|
131 | (if (null args) |
---|
132 | 0 |
---|
133 | (do ((args (cdr args) (cdr args)) |
---|
134 | (res (car args) |
---|
135 | (two-arg-+ res (car args)))) |
---|
136 | ((null args) res)))) |
---|
137 | |
---|
138 | (defmethod two-arg-- ((a qd-real) (b qd-real)) |
---|
139 | (make-instance 'qd-real :value (sub-qd (qd-value a) (qd-value b)))) |
---|
140 | |
---|
141 | (defmethod two-arg-- ((a qd-real) (b cl:float)) |
---|
142 | (make-instance 'qd-real :value (sub-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
143 | |
---|
144 | #+cmu |
---|
145 | (defmethod two-arg-- ((a qd-real) (b ext:double-double-float)) |
---|
146 | (make-instance 'qd-real :value (sub-qd-dd (qd-value a) b))) |
---|
147 | |
---|
148 | (defmethod two-arg-- ((a cl:float) (b qd-real)) |
---|
149 | (make-instance 'qd-real :value (sub-d-qd (cl:float a 1d0) (qd-value b)))) |
---|
150 | |
---|
151 | (defmethod two-arg-- ((a number) (b number)) |
---|
152 | (cl:- a b)) |
---|
153 | |
---|
154 | (defmethod unary-minus ((a number)) |
---|
155 | (cl:- a)) |
---|
156 | |
---|
157 | (defmethod unary-minus ((a qd-real)) |
---|
158 | (make-instance 'qd-real :value (neg-qd (qd-value a)))) |
---|
159 | |
---|
160 | (defun - (number &rest more-numbers) |
---|
161 | (if more-numbers |
---|
162 | (do ((nlist more-numbers (cdr nlist)) |
---|
163 | (result number)) |
---|
164 | ((atom nlist) result) |
---|
165 | (declare (list nlist)) |
---|
166 | (setq result (two-arg-- result (car nlist)))) |
---|
167 | (unary-minus number))) |
---|
168 | |
---|
169 | |
---|
170 | (defmethod two-arg-* ((a qd-real) (b qd-real)) |
---|
171 | (make-instance 'qd-real :value (mul-qd (qd-value a) (qd-value b)))) |
---|
172 | |
---|
173 | (defmethod two-arg-* ((a qd-real) (b cl:float)) |
---|
174 | (make-instance 'qd-real :value (mul-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
175 | |
---|
176 | #+cmu |
---|
177 | (defmethod two-arg-* ((a qd-real) (b ext:double-double-float)) |
---|
178 | ;; We'd normally want to use mul-qd-dd, but mul-qd-dd is broken. |
---|
179 | (make-instance 'qd-real :value (mul-qd (qd-value a) |
---|
180 | (make-qd-dd b 0w0)))) |
---|
181 | |
---|
182 | (defmethod two-arg-* ((a real) (b qd-real)) |
---|
183 | (* b a)) |
---|
184 | |
---|
185 | (defmethod two-arg-* ((a number) (b number)) |
---|
186 | (cl:* a b)) |
---|
187 | |
---|
188 | (defun * (&rest args) |
---|
189 | (if (null args) |
---|
190 | 1 |
---|
191 | (do ((args (cdr args) (cdr args)) |
---|
192 | (res (car args) |
---|
193 | (two-arg-* res (car args)))) |
---|
194 | ((null args) res)))) |
---|
195 | |
---|
196 | (defmethod two-arg-/ ((a qd-real) (b qd-real)) |
---|
197 | (make-instance 'qd-real :value (div-qd (qd-value a) (qd-value b)))) |
---|
198 | |
---|
199 | (defmethod two-arg-/ ((a qd-real) (b cl:float)) |
---|
200 | (make-instance 'qd-real :value (div-qd-d (qd-value a) (cl:float b 1d0)))) |
---|
201 | |
---|
202 | #+cmu |
---|
203 | (defmethod two-arg-/ ((a qd-real) (b ext:double-double-float)) |
---|
204 | (make-instance 'qd-real :value (div-qd-dd (qd-value a) |
---|
205 | b))) |
---|
206 | |
---|
207 | (defmethod two-arg-/ ((a cl:float) (b qd-real)) |
---|
208 | (make-instance 'qd-real :value (div-qd (make-qd-d (cl:float a 1d0)) |
---|
209 | (qd-value b)))) |
---|
210 | |
---|
211 | #+cmu |
---|
212 | (defmethod two-arg-/ ((a ext:double-double-float) (b qd-real)) |
---|
213 | (make-instance 'qd-real :value (div-qd (make-qd-dd a 0w0) |
---|
214 | (qd-value b)))) |
---|
215 | |
---|
216 | (defmethod two-arg-/ ((a number) (b number)) |
---|
217 | (cl:/ a b)) |
---|
218 | |
---|
219 | (defmethod unary-divide ((a number)) |
---|
220 | (cl:/ a)) |
---|
221 | |
---|
222 | (defmethod unary-divide ((a qd-real)) |
---|
223 | (make-instance 'qd-real :value (div-qd +qd-one+ (qd-value a)))) |
---|
224 | |
---|
225 | (defun / (number &rest more-numbers) |
---|
226 | (if more-numbers |
---|
227 | (do ((nlist more-numbers (cdr nlist)) |
---|
228 | (result number)) |
---|
229 | ((atom nlist) result) |
---|
230 | (declare (list nlist)) |
---|
231 | (setq result (two-arg-/ result (car nlist)))) |
---|
232 | (unary-divide number))) |
---|
233 | |
---|
234 | (macrolet ((frob (name &optional (type 'real)) |
---|
235 | (let ((method-name (intern (concatenate 'string |
---|
236 | (string '#:q) |
---|
237 | (symbol-name name)))) |
---|
238 | (cl-name (intern (symbol-name name) :cl)) |
---|
239 | (qd-name (intern (concatenate 'string |
---|
240 | (symbol-name name) |
---|
241 | (string '#:-qd))))) |
---|
242 | `(progn |
---|
243 | (defmethod ,method-name ((x ,type)) |
---|
244 | (,cl-name x)) |
---|
245 | (defmethod ,method-name ((x qd-real)) |
---|
246 | (,qd-name (qd-value x))) |
---|
247 | (declaim (inline ,name)) |
---|
248 | (defun ,name (x) |
---|
249 | (,method-name x)))))) |
---|
250 | (frob zerop number) |
---|
251 | (frob plusp) |
---|
252 | (frob minusp)) |
---|
253 | |
---|
254 | (defun bignum-to-qd (bignum) |
---|
255 | (make-instance 'qd-real |
---|
256 | :value (rational-to-qd bignum))) |
---|
257 | |
---|
258 | (defmethod qfloat ((x real) (num-type cl:float)) |
---|
259 | (cl:float x num-type)) |
---|
260 | |
---|
261 | (defmethod qfloat ((x cl:float) (num-type qd-real)) |
---|
262 | (make-instance 'qd-real :value (make-qd-d (cl:float x 1d0)))) |
---|
263 | |
---|
264 | (defmethod qfloat ((x integer) (num-type qd-real)) |
---|
265 | (cond ((typep x 'fixnum) |
---|
266 | (make-instance 'qd-real :value (make-qd-d (cl:float x 1d0)))) |
---|
267 | (t |
---|
268 | ;; A bignum |
---|
269 | (bignum-to-qd x)))) |
---|
270 | |
---|
271 | #+nil |
---|
272 | (defmethod qfloat ((x ratio) (num-type qd-real)) |
---|
273 | ;; This probably has some issues with roundoff |
---|
274 | (two-arg-/ (qfloat (numerator x) num-type) |
---|
275 | (qfloat (denominator x) num-type))) |
---|
276 | |
---|
277 | (defmethod qfloat ((x ratio) (num-type qd-real)) |
---|
278 | (make-instance 'qd-real :value (rational-to-qd x))) |
---|
279 | |
---|
280 | #+cmu |
---|
281 | (defmethod qfloat ((x ext:double-double-float) (num-type qd-real)) |
---|
282 | (make-instance 'qd-real :value (make-qd-dd x 0w0))) |
---|
283 | |
---|
284 | (defmethod qfloat ((x qd-real) (num-type cl:float)) |
---|
285 | (multiple-value-bind (q0 q1 q2 q3) |
---|
286 | (qd-parts (qd-value x)) |
---|
287 | (cl:float (cl:+ q0 q1 q2 q3) num-type))) |
---|
288 | |
---|
289 | #+cmu |
---|
290 | (defmethod qfloat ((x qd-real) (num-type ext:double-double-float)) |
---|
291 | (multiple-value-bind (q0 q1 q2 q3) |
---|
292 | (qd-parts (qd-value x)) |
---|
293 | (cl:+ (cl:float q0 1w0) |
---|
294 | (cl:float q1 1w0) |
---|
295 | (cl:float q2 1w0) |
---|
296 | (cl:float q3 1w0)))) |
---|
297 | |
---|
298 | (defmethod qfloat ((x qd-real) (num-type qd-real)) |
---|
299 | x) |
---|
300 | |
---|
301 | (declaim (inline float)) |
---|
302 | (defun float (x &optional num-type) |
---|
303 | (qfloat x (or num-type 1.0))) |
---|
304 | |
---|
305 | (defmethod qrealpart ((x number)) |
---|
306 | (cl:realpart x)) |
---|
307 | (defmethod qrealpart ((x qd-real)) |
---|
308 | x) |
---|
309 | (defmethod qrealpart ((x qd-complex)) |
---|
310 | (make-instance 'qd-real :value (qd-real x))) |
---|
311 | (defun realpart (x) |
---|
312 | (qrealpart x)) |
---|
313 | |
---|
314 | (defmethod qimagpart ((x number)) |
---|
315 | (cl:imagpart x)) |
---|
316 | (defmethod qimagpart ((x qd-real)) |
---|
317 | (make-qd 0d0)) |
---|
318 | (defmethod qimagpart ((x qd-complex)) |
---|
319 | (make-instance 'qd-real :value (qd-imag x))) |
---|
320 | |
---|
321 | (defun imagpart (x) |
---|
322 | (qimagpart x)) |
---|
323 | |
---|
324 | (defmethod qconjugate ((a number)) |
---|
325 | (cl:conjugate a)) |
---|
326 | |
---|
327 | (defmethod qconjugate ((a qd-real)) |
---|
328 | (make-instance 'qd-real :value (qd-value a))) |
---|
329 | |
---|
330 | (defmethod qconjugate ((a qd-complex)) |
---|
331 | (make-instance 'qd-complex |
---|
332 | :real (qd-real a) |
---|
333 | :imag (neg-qd (qd-imag a)))) |
---|
334 | |
---|
335 | (defun conjugate (z) |
---|
336 | (qconjugate z)) |
---|
337 | |
---|
338 | (defmethod qscale-float ((f cl:float) (n integer)) |
---|
339 | (cl:scale-float f n)) |
---|
340 | |
---|
341 | (defmethod qscale-float ((f qd-real) (n integer)) |
---|
342 | (make-instance 'qd-real :value (scale-float-qd (qd-value f) n))) |
---|
343 | |
---|
344 | (declaim (inline scale-float)) |
---|
345 | (defun scale-float (f n) |
---|
346 | (qscale-float f n)) |
---|
347 | |
---|
348 | (macrolet |
---|
349 | ((frob (op) |
---|
350 | (let ((method (intern (concatenate 'string |
---|
351 | (string '#:two-arg-) |
---|
352 | (symbol-name op)))) |
---|
353 | (cl-fun (find-symbol (symbol-name op) :cl)) |
---|
354 | (qd-fun (intern (concatenate 'string (string '#:qd-) (symbol-name op)) |
---|
355 | '#:octi))) |
---|
356 | `(progn |
---|
357 | (defmethod ,method ((a real) (b real)) |
---|
358 | (,cl-fun a b)) |
---|
359 | (defmethod ,method ((a qd-real) (b real)) |
---|
360 | (,qd-fun (qd-value a) (make-qd-d (cl:float b 1d0)))) |
---|
361 | (defmethod ,method ((a real) (b qd-real)) |
---|
362 | ;; This is not really right if A is a rational. We're |
---|
363 | ;; supposed to compare them as rationals. |
---|
364 | (,qd-fun (make-qd-d (cl:float a 1d0)) (qd-value b))) |
---|
365 | (defmethod ,method ((a qd-real) (b qd-real)) |
---|
366 | (,qd-fun (qd-value a) (qd-value b))) |
---|
367 | (defun ,op (number &rest more-numbers) |
---|
368 | "Returns T if its arguments are in strictly increasing order, NIL otherwise." |
---|
369 | (declare (optimize (safety 2)) |
---|
370 | (dynamic-extent more-numbers)) |
---|
371 | (do* ((n number (car nlist)) |
---|
372 | (nlist more-numbers (cdr nlist))) |
---|
373 | ((atom nlist) t) |
---|
374 | (declare (list nlist)) |
---|
375 | (if (not (,method n (car nlist))) (return nil)))))))) |
---|
376 | (frob <) |
---|
377 | (frob >) |
---|
378 | (frob <=) |
---|
379 | (frob >=)) |
---|
380 | |
---|
381 | ;; Handle the special functions for a real argument. Complex args are |
---|
382 | ;; handled elsewhere. |
---|
383 | (macrolet |
---|
384 | ((frob (name) |
---|
385 | (let ((method-name |
---|
386 | (intern (concatenate 'string (string '#:q) |
---|
387 | (symbol-name name)))) |
---|
388 | (cl-name (intern (symbol-name name) :cl)) |
---|
389 | (qd-name (intern (concatenate 'string (symbol-name name) |
---|
390 | (string '#:-qd))))) |
---|
391 | `(progn |
---|
392 | (defmethod ,name ((x number)) |
---|
393 | (,cl-name x)) |
---|
394 | (defmethod ,name ((x qd-real)) |
---|
395 | (make-instance 'qd-real :value (,qd-name (qd-value x)))))))) |
---|
396 | (frob abs) |
---|
397 | (frob exp) |
---|
398 | (frob sin) |
---|
399 | (frob cos) |
---|
400 | (frob tan) |
---|
401 | ;;(frob asin) |
---|
402 | ;;(frob acos) |
---|
403 | (frob sinh) |
---|
404 | (frob cosh) |
---|
405 | (frob tanh) |
---|
406 | (frob asinh) |
---|
407 | ;;(frob acosh) |
---|
408 | ;;(frob atanh) |
---|
409 | ) |
---|
410 | |
---|
411 | (defmethod sqrt ((x number)) |
---|
412 | (cl:sqrt x)) |
---|
413 | |
---|
414 | (defmethod sqrt ((x qd-real)) |
---|
415 | (if (minusp x) |
---|
416 | (make-instance 'qd-complex |
---|
417 | :real +qd-zero+ |
---|
418 | :imag (sqrt-qd (neg-qd (qd-value x)))) |
---|
419 | (make-instance 'qd-real :value (sqrt-qd (qd-value x))))) |
---|
420 | |
---|
421 | (defun scalb (x n) |
---|
422 | "Compute 2^N * X without compute 2^N first (use properties of the |
---|
423 | underlying floating-point format" |
---|
424 | (declare (type qd-real x)) |
---|
425 | (scale-float x n)) |
---|
426 | |
---|
427 | (declaim (inline qd-cssqs)) |
---|
428 | (defun qd-cssqs (z) |
---|
429 | (multiple-value-bind (rho k) |
---|
430 | (octi::hypot-aux-qd (qd-value (realpart z)) |
---|
431 | (qd-value (imagpart z))) |
---|
432 | (values (make-instance 'qd-real :value rho) |
---|
433 | k))) |
---|
434 | |
---|
435 | #+nil |
---|
436 | (defmethod qabs ((z qd-complex)) |
---|
437 | ;; sqrt(x^2+y^2) |
---|
438 | ;; If |x| > |y| then sqrt(x^2+y^2) = |x|*sqrt(1+(y/x)^2) |
---|
439 | (multiple-value-bind (abs^2 rho) |
---|
440 | (hypot-qd (qd-value (realpart z)) |
---|
441 | (qd-value (imagpart z))) |
---|
442 | (scale-float (make-instance 'qd-real :value (sqrt abs^2)) |
---|
443 | rho))) |
---|
444 | |
---|
445 | (defmethod abs ((z qd-complex)) |
---|
446 | ;; sqrt(x^2+y^2) |
---|
447 | ;; If |x| > |y| then sqrt(x^2+y^2) = |x|*sqrt(1+(y/x)^2) |
---|
448 | (make-instance 'qd-real |
---|
449 | :value (hypot-qd (qd-value (realpart z)) |
---|
450 | (qd-value (imagpart z))))) |
---|
451 | |
---|
452 | (defmethod log ((a number) &optional b) |
---|
453 | (if b |
---|
454 | (cl:log a b) |
---|
455 | (cl:log a))) |
---|
456 | |
---|
457 | (defmethod log ((a qd-real) &optional b) |
---|
458 | (if b |
---|
459 | (/ (log a) (log b)) |
---|
460 | (if (minusp (float-sign a)) |
---|
461 | (make-instance 'qd-complex |
---|
462 | :real (log-qd (abs-qd (qd-value a))) |
---|
463 | :imag +qd-pi+) |
---|
464 | (make-instance 'qd-real :value (log-qd (qd-value a)))))) |
---|
465 | |
---|
466 | (defmethod log1p ((a qd-real)) |
---|
467 | (make-instance 'qd-real :value (log1p-qd (qd-value a)))) |
---|
468 | |
---|
469 | (defmethod atan ((y real) &optional x) |
---|
470 | (cond (x |
---|
471 | (cond ((typep x 'qd-real) |
---|
472 | (make-instance 'qd-real |
---|
473 | :value (atan2-qd (qd-value y) (qd-value x)))) |
---|
474 | (t |
---|
475 | (cl:atan y x)))) |
---|
476 | (t |
---|
477 | (cl:atan y)))) |
---|
478 | |
---|
479 | (defmethod atan ((y qd-real) &optional x) |
---|
480 | (make-instance 'qd-real |
---|
481 | :value |
---|
482 | (if x |
---|
483 | (atan2-qd (qd-value y) (qd-value x)) |
---|
484 | (atan-qd (qd-value y))))) |
---|
485 | |
---|
486 | (defmethod qexpt ((x number) (y number)) |
---|
487 | (cl:expt x y)) |
---|
488 | |
---|
489 | (defmethod qexpt ((x number) (y qd-real)) |
---|
490 | (exp (* y (log (apply-contagion x 'qd-real))))) |
---|
491 | |
---|
492 | (defmethod qexpt ((x number) (y qd-complex)) |
---|
493 | (exp (* y (log (apply-contagion x 'qd-real))))) |
---|
494 | |
---|
495 | (defmethod qexpt ((x qd-real) (y real)) |
---|
496 | (exp (* y (log x)))) |
---|
497 | |
---|
498 | (defmethod qexpt ((x qd-real) (y cl:complex)) |
---|
499 | (exp (* (make-instance 'qd-complex |
---|
500 | :real (qd-value (realpart y)) |
---|
501 | :imag (qd-value (imagpart y))) |
---|
502 | (log x)))) |
---|
503 | |
---|
504 | (defmethod qexpt ((x qd-real) (y qd-real)) |
---|
505 | ;; x^y = exp(y*log(x)) |
---|
506 | (exp (* y (log x)))) |
---|
507 | |
---|
508 | (defmethod qexpt ((x qd-real) (y integer)) |
---|
509 | (make-instance 'qd-real |
---|
510 | :value (npow (qd-value x) y))) |
---|
511 | |
---|
512 | (declaim (inline expt)) |
---|
513 | (defun expt (x y) |
---|
514 | (qexpt x y)) |
---|
515 | |
---|
516 | |
---|
517 | |
---|
518 | (defmethod two-arg-= ((a number) (b number)) |
---|
519 | (cl:= a b)) |
---|
520 | |
---|
521 | (defmethod two-arg-= ((a qd-real) (b number)) |
---|
522 | (if (cl:realp b) |
---|
523 | (qd-= (qd-value a) (make-qd-d (cl:float b 1d0))) |
---|
524 | nil)) |
---|
525 | |
---|
526 | (defmethod two-arg-= ((a number) (b qd-real)) |
---|
527 | (if (cl:realp a) |
---|
528 | (qd-= (make-qd-d (cl:float a 1d0)) (qd-value b)) |
---|
529 | nil)) |
---|
530 | |
---|
531 | (defmethod two-arg-= ((a qd-complex) b) |
---|
532 | (and (two-arg-= (realpart a) (realpart b)) |
---|
533 | (two-arg-= (imagpart a) (imagpart b)))) |
---|
534 | |
---|
535 | (defmethod two-arg-= (a (b qd-complex)) |
---|
536 | (and (two-arg-= (realpart a) (realpart b)) |
---|
537 | (two-arg-= (imagpart a) (imagpart b)))) |
---|
538 | |
---|
539 | |
---|
540 | (defmethod two-arg-= ((a qd-real) (b qd-real)) |
---|
541 | (qd-= (qd-value a) (qd-value b))) |
---|
542 | |
---|
543 | (defun = (number &rest more-numbers) |
---|
544 | "Returns T if all of its arguments are numerically equal, NIL otherwise." |
---|
545 | (declare (optimize (safety 2)) |
---|
546 | (dynamic-extent more-numbers)) |
---|
547 | (do ((nlist more-numbers (cdr nlist))) |
---|
548 | ((atom nlist) t) |
---|
549 | (declare (list nlist)) |
---|
550 | (if (not (two-arg-= (car nlist) number)) |
---|
551 | (return nil)))) |
---|
552 | |
---|
553 | (defun /= (number &rest more-numbers) |
---|
554 | "Returns T if no two of its arguments are numerically equal, NIL otherwise." |
---|
555 | (declare (optimize (safety 2)) |
---|
556 | (dynamic-extent more-numbers)) |
---|
557 | (do* ((head number (car nlist)) |
---|
558 | (nlist more-numbers (cdr nlist))) |
---|
559 | ((atom nlist) t) |
---|
560 | (declare (list nlist)) |
---|
561 | (unless (do* ((nl nlist (cdr nl))) |
---|
562 | ((atom nl) t) |
---|
563 | (declare (list nl)) |
---|
564 | (if (two-arg-= head (car nl)) |
---|
565 | (return nil))) |
---|
566 | (return nil)))) |
---|
567 | |
---|
568 | (defmethod qcomplex ((x cl:real) (y cl:real)) |
---|
569 | (cl:complex x y)) |
---|
570 | |
---|
571 | (defmethod qcomplex ((x cl:real) (y qd-real)) |
---|
572 | (qcomplex (make-qd x) y)) |
---|
573 | |
---|
574 | (defmethod qcomplex ((x qd-real) (y qd-real)) |
---|
575 | (make-instance 'qd-complex |
---|
576 | :real (qd-value x) |
---|
577 | :imag (qd-value y))) |
---|
578 | |
---|
579 | (defmethod qcomplex ((x qd-real) (y cl:real)) |
---|
580 | (make-instance 'qd-complex |
---|
581 | :real (qd-value x) |
---|
582 | :imag (make-qd-d y))) |
---|
583 | |
---|
584 | (defun complex (x &optional (y 0)) |
---|
585 | (qcomplex x y)) |
---|
586 | |
---|
587 | (defmethod qinteger-decode-float ((f cl:float)) |
---|
588 | (cl:integer-decode-float f)) |
---|
589 | |
---|
590 | (defmethod qinteger-decode-float ((f qd-real)) |
---|
591 | (integer-decode-qd (qd-value f))) |
---|
592 | |
---|
593 | (declaim (inline integer-decode-float)) |
---|
594 | (defun integer-decode-float (f) |
---|
595 | (qinteger-decode-float f)) |
---|
596 | |
---|
597 | (defmethod qdecode-float ((f cl:float)) |
---|
598 | (cl:decode-float f)) |
---|
599 | |
---|
600 | (defmethod qdecode-float ((f qd-real)) |
---|
601 | (multiple-value-bind (frac exp s) |
---|
602 | (decode-float-qd (qd-value f)) |
---|
603 | (values (make-instance 'qd-real :value frac) |
---|
604 | exp |
---|
605 | (make-instance 'qd-real :value s)))) |
---|
606 | |
---|
607 | (declaim (inline decode-float)) |
---|
608 | (defun decode-float (f) |
---|
609 | (qdecode-float f)) |
---|
610 | |
---|
611 | (defmethod qfloor ((x real) &optional y) |
---|
612 | (if y |
---|
613 | (cl:floor x y) |
---|
614 | (cl:floor x))) |
---|
615 | |
---|
616 | (defmethod qfloor ((x qd-real) &optional y) |
---|
617 | (if (and y (/= y 1)) |
---|
618 | (let ((f (qfloor (/ x y)))) |
---|
619 | (values f |
---|
620 | (- x (* f y)))) |
---|
621 | (let ((f (ffloor-qd (qd-value x)))) |
---|
622 | (multiple-value-bind (int exp sign) |
---|
623 | (integer-decode-qd f) |
---|
624 | (values (ash (* sign int) exp) |
---|
625 | (make-instance 'qd-real |
---|
626 | :value (qd-value |
---|
627 | (- x (make-instance 'qd-real |
---|
628 | :value f))))))))) |
---|
629 | |
---|
630 | (defun floor (x &optional y) |
---|
631 | (qfloor x y)) |
---|
632 | |
---|
633 | (defmethod qffloor ((x real) &optional y) |
---|
634 | (if y |
---|
635 | (cl:ffloor x y) |
---|
636 | (cl:ffloor x))) |
---|
637 | |
---|
638 | (defmethod qffloor ((x qd-real) &optional y) |
---|
639 | (if (and y (/= y 1)) |
---|
640 | (let ((f (qffloor (/ x y)))) |
---|
641 | (values f |
---|
642 | (- x (* f y)))) |
---|
643 | (let ((f (make-instance 'qd-real :value (ffloor-qd (qd-value x))))) |
---|
644 | (values f |
---|
645 | (- x f))))) |
---|
646 | |
---|
647 | (defun ffloor (x &optional y) |
---|
648 | (qffloor x y)) |
---|
649 | |
---|
650 | (defun ceiling (x &optional y) |
---|
651 | (multiple-value-bind (f rem) |
---|
652 | (floor x y) |
---|
653 | (if (zerop rem) |
---|
654 | (values f |
---|
655 | rem) |
---|
656 | (values (+ f 1) |
---|
657 | (- rem 1))))) |
---|
658 | |
---|
659 | (defun fceiling (x &optional y) |
---|
660 | (multiple-value-bind (f rem) |
---|
661 | (ffloor x y) |
---|
662 | (if (zerop rem) |
---|
663 | (values f |
---|
664 | rem) |
---|
665 | (values (+ f 1) |
---|
666 | (- rem 1))))) |
---|
667 | |
---|
668 | (defun truncate (x &optional (y 1)) |
---|
669 | (if (minusp x) |
---|
670 | (ceiling x y) |
---|
671 | (floor x y))) |
---|
672 | |
---|
673 | (defun rem (x y) |
---|
674 | (nth-value 1 (truncate x y))) |
---|
675 | |
---|
676 | (defun mod (x y) |
---|
677 | (nth-value 1 (floor x y))) |
---|
678 | |
---|
679 | (defun ftruncate (x &optional (y 1)) |
---|
680 | (if (minusp x) |
---|
681 | (fceiling x y) |
---|
682 | (ffloor x y))) |
---|
683 | |
---|
684 | (defmethod %unary-round ((x real)) |
---|
685 | (cl::round x)) |
---|
686 | |
---|
687 | (defmethod %unary-round ((number qd-real)) |
---|
688 | (multiple-value-bind (bits exp) |
---|
689 | (integer-decode-float number) |
---|
690 | (let* ((shifted (ash bits exp)) |
---|
691 | (rounded (if (and (minusp exp) |
---|
692 | (oddp shifted) |
---|
693 | (not (zerop (logand bits |
---|
694 | (ash 1 (- -1 exp)))))) |
---|
695 | (1+ shifted) |
---|
696 | shifted))) |
---|
697 | (if (minusp number) |
---|
698 | (- rounded) |
---|
699 | rounded)))) |
---|
700 | |
---|
701 | (defun round (number &optional (divisor 1)) |
---|
702 | (if (eql divisor 1) |
---|
703 | (let ((r (%unary-round number))) |
---|
704 | (values r |
---|
705 | (- number r))) |
---|
706 | (multiple-value-bind (tru rem) |
---|
707 | (truncate number divisor) |
---|
708 | (if (zerop rem) |
---|
709 | (values tru rem) |
---|
710 | (let ((thresh (/ (abs divisor) 2))) |
---|
711 | (cond ((or (> rem thresh) |
---|
712 | (and (= rem thresh) (oddp tru))) |
---|
713 | (if (minusp divisor) |
---|
714 | (values (- tru 1) (+ rem divisor)) |
---|
715 | (values (+ tru 1) (- rem divisor)))) |
---|
716 | ((let ((-thresh (- thresh))) |
---|
717 | (or (< rem -thresh) |
---|
718 | (and (= rem -thresh) (oddp tru)))) |
---|
719 | (if (minusp divisor) |
---|
720 | (values (+ tru 1) (- rem divisor)) |
---|
721 | (values (- tru 1) (+ rem divisor)))) |
---|
722 | (t (values tru rem)))))))) |
---|
723 | |
---|
724 | (defun fround (number &optional (divisor 1)) |
---|
725 | "Same as ROUND, but returns first value as a float." |
---|
726 | (multiple-value-bind (res rem) |
---|
727 | (round number divisor) |
---|
728 | (values (float res (if (floatp rem) rem 1.0)) rem))) |
---|
729 | |
---|
730 | (defmethod qfloat-sign ((a real) &optional (f (float 1 a))) |
---|
731 | (cl:float-sign a f)) |
---|
732 | |
---|
733 | |
---|
734 | (defmethod qfloat-sign ((a qd-real) &optional f) |
---|
735 | (if f |
---|
736 | (make-instance 'qd-real |
---|
737 | :value (mul-qd-d (abs-qd (qd-value f)) |
---|
738 | (cl:float-sign (qd-0 (qd-value a))))) |
---|
739 | (make-instance 'qd-real :value (make-qd-d (cl:float-sign (qd-0 (qd-value a))))))) |
---|
740 | |
---|
741 | (declaim (inline float-sign)) |
---|
742 | (defun float-sign (n &optional (float2 nil float2p)) |
---|
743 | (if float2p |
---|
744 | (qfloat-sign n float2) |
---|
745 | (qfloat-sign n))) |
---|
746 | |
---|
747 | (defun max (number &rest more-numbers) |
---|
748 | "Returns the greatest of its arguments." |
---|
749 | (declare (optimize (safety 2)) (type (or real qd-real) number) |
---|
750 | (dynamic-extent more-numbers)) |
---|
751 | (dolist (real more-numbers) |
---|
752 | (when (> real number) |
---|
753 | (setq number real))) |
---|
754 | number) |
---|
755 | |
---|
756 | (defun min (number &rest more-numbers) |
---|
757 | "Returns the least of its arguments." |
---|
758 | (declare (optimize (safety 2)) (type (or real qd-real) number) |
---|
759 | (dynamic-extent more-numbers)) |
---|
760 | (do ((nlist more-numbers (cdr nlist)) |
---|
761 | (result (the (or real qd-real) number))) |
---|
762 | ((null nlist) (return result)) |
---|
763 | (declare (list nlist)) |
---|
764 | (if (< (car nlist) result) |
---|
765 | (setq result (car nlist))))) |
---|
766 | |
---|
767 | (defmethod asin ((x number)) |
---|
768 | (cl:asin x)) |
---|
769 | |
---|
770 | (defmethod asin ((x qd-real)) |
---|
771 | (if (<= -1 x 1) |
---|
772 | (make-instance 'qd-real :value (asin-qd (qd-value x))) |
---|
773 | (qd-complex-asin x))) |
---|
774 | |
---|
775 | (defmethod acos ((x number)) |
---|
776 | (cl:acos x)) |
---|
777 | |
---|
778 | (defmethod acos ((x qd-real)) |
---|
779 | (cond ((> (abs x) 1) |
---|
780 | (qd-complex-acos x)) |
---|
781 | (t |
---|
782 | (make-instance 'qd-real :value (acos-qd (qd-value x)))))) |
---|
783 | |
---|
784 | (defmethod acosh ((x number)) |
---|
785 | (cl:acosh x)) |
---|
786 | |
---|
787 | (defmethod acosh ((x qd-real)) |
---|
788 | (if (< x 1) |
---|
789 | (qd-complex-acosh x) |
---|
790 | (make-instance 'qd-real :value (acosh-qd (qd-value x))))) |
---|
791 | |
---|
792 | (defmethod atanh ((x number)) |
---|
793 | (cl:atanh x)) |
---|
794 | |
---|
795 | (defmethod atanh ((x qd-real)) |
---|
796 | (if (> (abs x) 1) |
---|
797 | (qd-complex-atanh x) |
---|
798 | (make-instance 'qd-real :value (atanh-qd (qd-value x))))) |
---|
799 | |
---|
800 | (defmethod cis ((x real)) |
---|
801 | (cl:cis x)) |
---|
802 | |
---|
803 | (defmethod cis ((x qd-real)) |
---|
804 | (multiple-value-bind (s c) |
---|
805 | (sincos-qd (qd-value x)) |
---|
806 | (make-instance 'qd-complex |
---|
807 | :real c |
---|
808 | :imag s))) |
---|
809 | |
---|
810 | (defmethod phase ((x number)) |
---|
811 | (cl:phase x)) |
---|
812 | |
---|
813 | (defmethod phase ((x qd-real)) |
---|
814 | (if (minusp x) |
---|
815 | (- +pi+) |
---|
816 | (make-instance 'qd-real :value (make-qd-d 0d0)))) |
---|
817 | |
---|
818 | (defun signum (number) |
---|
819 | "If NUMBER is zero, return NUMBER, else return (/ NUMBER (ABS NUMBER))." |
---|
820 | (if (zerop number) |
---|
821 | number |
---|
822 | (if (rationalp number) |
---|
823 | (if (plusp number) 1 -1) |
---|
824 | (/ number (abs number))))) |
---|
825 | |
---|
826 | (defmethod random ((x cl:real) &optional (state *random-state*)) |
---|
827 | (cl:random x state)) |
---|
828 | |
---|
829 | (defmethod random ((x qd-real) &optional (state *random-state*)) |
---|
830 | (* x (make-instance 'qd-real |
---|
831 | :value (octi:random-qd state)))) |
---|
832 | |
---|
833 | (defmethod float-digits ((x cl:real)) |
---|
834 | (cl:float-digits x)) |
---|
835 | |
---|
836 | (defmethod float-digits ((x qd-real)) |
---|
837 | (* 4 (float-digits 1d0))) |
---|
838 | |
---|
839 | (defmethod rational ((x real)) |
---|
840 | (cl:rational x)) |
---|
841 | |
---|
842 | (defmethod rational ((x qd-real)) |
---|
843 | (with-qd-parts (x0 x1 x2 x3) |
---|
844 | (qd-value x) |
---|
845 | (+ (cl:rational x0) |
---|
846 | (cl:rational x1) |
---|
847 | (cl:rational x2) |
---|
848 | (cl:rational x3)))) |
---|
849 | |
---|
850 | (defmethod rationalize ((x cl:real)) |
---|
851 | (cl:rationalize x)) |
---|
852 | |
---|
853 | ;;; The algorithm here is the method described in CLISP. Bruno Haible has |
---|
854 | ;;; graciously given permission to use this algorithm. He says, "You can use |
---|
855 | ;;; it, if you present the following explanation of the algorithm." |
---|
856 | ;;; |
---|
857 | ;;; Algorithm (recursively presented): |
---|
858 | ;;; If x is a rational number, return x. |
---|
859 | ;;; If x = 0.0, return 0. |
---|
860 | ;;; If x < 0.0, return (- (rationalize (- x))). |
---|
861 | ;;; If x > 0.0: |
---|
862 | ;;; Call (integer-decode-float x). It returns a m,e,s=1 (mantissa, |
---|
863 | ;;; exponent, sign). |
---|
864 | ;;; If m = 0 or e >= 0: return x = m*2^e. |
---|
865 | ;;; Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e |
---|
866 | ;;; with smallest possible numerator and denominator. |
---|
867 | ;;; Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e. |
---|
868 | ;;; But in this case the result will be x itself anyway, regardless of |
---|
869 | ;;; the choice of a. Therefore we can simply ignore this case. |
---|
870 | ;;; Note 2: At first, we need to consider the closed interval [a,b]. |
---|
871 | ;;; but since a and b have the denominator 2^(|e|+1) whereas x itself |
---|
872 | ;;; has a denominator <= 2^|e|, we can restrict the seach to the open |
---|
873 | ;;; interval (a,b). |
---|
874 | ;;; So, for given a and b (0 < a < b) we are searching a rational number |
---|
875 | ;;; y with a <= y <= b. |
---|
876 | ;;; Recursive algorithm fraction_between(a,b): |
---|
877 | ;;; c := (ceiling a) |
---|
878 | ;;; if c < b |
---|
879 | ;;; then return c ; because a <= c < b, c integer |
---|
880 | ;;; else |
---|
881 | ;;; ; a is not integer (otherwise we would have had c = a < b) |
---|
882 | ;;; k := c-1 ; k = floor(a), k < a < b <= k+1 |
---|
883 | ;;; return y = k + 1/fraction_between(1/(b-k), 1/(a-k)) |
---|
884 | ;;; ; note 1 <= 1/(b-k) < 1/(a-k) |
---|
885 | ;;; |
---|
886 | ;;; You can see that we are actually computing a continued fraction expansion. |
---|
887 | ;;; |
---|
888 | ;;; Algorithm (iterative): |
---|
889 | ;;; If x is rational, return x. |
---|
890 | ;;; Call (integer-decode-float x). It returns a m,e,s (mantissa, |
---|
891 | ;;; exponent, sign). |
---|
892 | ;;; If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.) |
---|
893 | ;;; Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1) |
---|
894 | ;;; (positive and already in lowest terms because the denominator is a |
---|
895 | ;;; power of two and the numerator is odd). |
---|
896 | ;;; Start a continued fraction expansion |
---|
897 | ;;; p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0. |
---|
898 | ;;; Loop |
---|
899 | ;;; c := (ceiling a) |
---|
900 | ;;; if c >= b |
---|
901 | ;;; then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)), |
---|
902 | ;;; goto Loop |
---|
903 | ;;; finally partial_quotient(c). |
---|
904 | ;;; Here partial_quotient(c) denotes the iteration |
---|
905 | ;;; i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2]. |
---|
906 | ;;; At the end, return s * (p[i]/q[i]). |
---|
907 | ;;; This rational number is already in lowest terms because |
---|
908 | ;;; p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i. |
---|
909 | ;;; |
---|
910 | (defmethod rationalize ((x qd-real)) |
---|
911 | ;; This is a fairly straigtforward implementation of the iterative |
---|
912 | ;; algorithm above. |
---|
913 | (multiple-value-bind (frac expo sign) |
---|
914 | (integer-decode-float x) |
---|
915 | (cond ((or (zerop frac) (>= expo 0)) |
---|
916 | (if (minusp sign) |
---|
917 | (- (ash frac expo)) |
---|
918 | (ash frac expo))) |
---|
919 | (t |
---|
920 | ;; expo < 0 and (2*m-1) and (2*m+1) are coprime to 2^(1-e), |
---|
921 | ;; so build the fraction up immediately, without having to do |
---|
922 | ;; a gcd. |
---|
923 | (let ((a (/ (- (* 2 frac) 1) (ash 1 (- 1 expo)))) |
---|
924 | (b (/ (+ (* 2 frac) 1) (ash 1 (- 1 expo)))) |
---|
925 | (p0 0) |
---|
926 | (q0 1) |
---|
927 | (p1 1) |
---|
928 | (q1 0)) |
---|
929 | (do ((c (ceiling a) (ceiling a))) |
---|
930 | ((< c b) |
---|
931 | (let ((top (+ (* c p1) p0)) |
---|
932 | (bot (+ (* c q1) q0))) |
---|
933 | (/ (if (minusp sign) |
---|
934 | (- top) |
---|
935 | top) |
---|
936 | bot))) |
---|
937 | (let* ((k (- c 1)) |
---|
938 | (p2 (+ (* k p1) p0)) |
---|
939 | (q2 (+ (* k q1) q0))) |
---|
940 | (psetf a (/ (- b k)) |
---|
941 | b (/ (- a k))) |
---|
942 | (setf p0 p1 |
---|
943 | q0 q1 |
---|
944 | p1 p2 |
---|
945 | q1 q2)))))))) |
---|
946 | |
---|
947 | (define-compiler-macro + (&whole form &rest args) |
---|
948 | (declare (ignore form)) |
---|
949 | (if (null args) |
---|
950 | 0 |
---|
951 | (do ((args (cdr args) (cdr args)) |
---|
952 | (res (car args) |
---|
953 | `(two-arg-+ ,res ,(car args)))) |
---|
954 | ((null args) res)))) |
---|
955 | |
---|
956 | (define-compiler-macro - (&whole form number &rest more-numbers) |
---|
957 | (declare (ignore form)) |
---|
958 | (if more-numbers |
---|
959 | (do ((nlist more-numbers (cdr nlist)) |
---|
960 | (result number)) |
---|
961 | ((atom nlist) result) |
---|
962 | (declare (list nlist)) |
---|
963 | (setq result `(two-arg-- ,result ,(car nlist)))) |
---|
964 | `(unary-minus ,number))) |
---|
965 | |
---|
966 | (define-compiler-macro * (&whole form &rest args) |
---|
967 | (declare (ignore form)) |
---|
968 | (if (null args) |
---|
969 | 1 |
---|
970 | (do ((args (cdr args) (cdr args)) |
---|
971 | (res (car args) |
---|
972 | `(two-arg-* ,res ,(car args)))) |
---|
973 | ((null args) res)))) |
---|
974 | |
---|
975 | (define-compiler-macro / (number &rest more-numbers) |
---|
976 | (if more-numbers |
---|
977 | (do ((nlist more-numbers (cdr nlist)) |
---|
978 | (result number)) |
---|
979 | ((atom nlist) result) |
---|
980 | (declare (list nlist)) |
---|
981 | (setq result `(two-arg-/ ,result ,(car nlist)))) |
---|
982 | `(unary-divide ,number))) |
---|
983 | |
---|
984 | ;; Compiler macros to convert <, >, <=, and >= into multiple calls of |
---|
985 | ;; the corresponding two-arg-<foo> function. |
---|
986 | (macrolet |
---|
987 | ((frob (op) |
---|
988 | (let ((method (intern (concatenate 'string |
---|
989 | (string '#:two-arg-) |
---|
990 | (symbol-name op))))) |
---|
991 | `(define-compiler-macro ,op (number &rest more-numbers) |
---|
992 | (do* ((n number (car nlist)) |
---|
993 | (nlist more-numbers (cdr nlist)) |
---|
994 | (res nil)) |
---|
995 | ((atom nlist) |
---|
996 | `(and ,@(nreverse res))) |
---|
997 | (push `(,',method ,n ,(car nlist)) res)))))) |
---|
998 | (frob <) |
---|
999 | (frob >) |
---|
1000 | (frob <=) |
---|
1001 | (frob >=)) |
---|
1002 | |
---|
1003 | (define-compiler-macro /= (&whole form number &rest more-numbers) |
---|
1004 | ;; Convert (/= x y) to (not (two-arg-= x y)). Should we try to |
---|
1005 | ;; handle a few more cases? |
---|
1006 | (if (cdr more-numbers) |
---|
1007 | form |
---|
1008 | `(not (two-arg-= ,number ,(car more-numbers))))) |
---|
1009 | |
---|
1010 | |
---|
1011 | ;; Define compiler macro the convert two-arg-foo into the appropriate |
---|
1012 | ;; CL function or QD-REAL function so we don't have to do CLOS |
---|
1013 | ;; dispatch. |
---|
1014 | #+(or) |
---|
1015 | (macrolet |
---|
1016 | ((frob (name cl-op qd-op) |
---|
1017 | `(define-compiler-macro ,name (&whole form x y &environment env) |
---|
1018 | (flet ((arg-type (arg) |
---|
1019 | (multiple-value-bind (def-type localp decl) |
---|
1020 | (ext:variable-information arg env) |
---|
1021 | (declare (ignore localp)) |
---|
1022 | (when def-type |
---|
1023 | (cdr (assoc 'type decl)))))) |
---|
1024 | (let ((x-type (arg-type x)) |
---|
1025 | (y-type (arg-type y))) |
---|
1026 | (cond ((and (subtypep x-type 'cl:number) |
---|
1027 | (subtypep y-type 'cl:number)) |
---|
1028 | `(,',cl-op ,x ,y)) |
---|
1029 | ((and (subtypep x-type 'qd-real) |
---|
1030 | (subtypep y-type 'qd-real)) |
---|
1031 | `(make-instance 'qd-real :value (,',qd-op (qd-value ,x) |
---|
1032 | (qd-value ,y)))) |
---|
1033 | (t |
---|
1034 | ;; Don't know how to handle this, so give up. |
---|
1035 | form))))))) |
---|
1036 | (frob two-arg-+ cl:+ add-qd) |
---|
1037 | (frob two-arg-- cl:- sub-qd) |
---|
1038 | (frob two-arg-* cl:* mul-qd) |
---|
1039 | (frob two-arg-/ cl:/ div-qd)) |
---|
1040 | |
---|
1041 | #+(or) |
---|
1042 | (macrolet |
---|
1043 | ((frob (name cl-op qd-op cl-qd-op qd-cl-op) |
---|
1044 | `(define-compiler-macro ,name (&whole form x y &environment env) |
---|
1045 | (flet ((arg-type (arg) |
---|
1046 | (multiple-value-bind (def-type localp decl) |
---|
1047 | (ext:variable-information arg env) |
---|
1048 | (declare (ignore localp)) |
---|
1049 | (when def-type |
---|
1050 | (cdr (assoc 'type decl)))))) |
---|
1051 | (let ((x-type (arg-type x)) |
---|
1052 | (y-type (arg-type y))) |
---|
1053 | (cond ((subtypep x-type 'cl:float) |
---|
1054 | (cond ((subtypep y-type 'cl:number) |
---|
1055 | `(,',cl-op ,x ,y)) |
---|
1056 | ((subtypep y-type 'qd-real) |
---|
1057 | (if ,cl-qd-op |
---|
1058 | `(make-instance 'qd-real :value (,',cl-qd-op (cl:float ,x 1d0) |
---|
1059 | (qd-value ,y))) |
---|
1060 | form)) |
---|
1061 | (t form))) |
---|
1062 | ((subtypep x-type 'qd-real) |
---|
1063 | (cond ((subtypep y-type 'cl:float) |
---|
1064 | (if ,qd-cl-op |
---|
1065 | `(make-instance 'qd-real :value (,',qd-cl-op (qd-value ,x) |
---|
1066 | (float ,y 1d0))) |
---|
1067 | form)) |
---|
1068 | ((subtypep y-type 'qd-real) |
---|
1069 | `(make-instance 'qd-real :value (,',qd-op (qd-value ,x) |
---|
1070 | (qd-value ,y)))) |
---|
1071 | (t form))) |
---|
1072 | (t |
---|
1073 | ;; Don't know how to handle this, so give up. |
---|
1074 | form))))))) |
---|
1075 | (frob two-arg-+ cl:+ add-qd add-d-qd add-qd-d) |
---|
1076 | (frob two-arg-- cl:- sub-qd sub-d-qd sub-qd-d) |
---|
1077 | (frob two-arg-* cl:* mul-qd mul-d-qd mul-qd-d) |
---|
1078 | (frob two-arg-/ cl:/ div-qd nil nil)) |
---|
1079 | |
---|
1080 | (defgeneric epsilon (m) |
---|
1081 | (:documentation |
---|
1082 | "Return an epsilon value of the same precision as the argument. It is |
---|
1083 | the smallest number x such that 1+x /= x. The argument can be |
---|
1084 | complex")) |
---|
1085 | |
---|
1086 | (defmethod epsilon ((m cl:float)) |
---|
1087 | (etypecase m |
---|
1088 | (single-float single-float-epsilon) |
---|
1089 | (double-float double-float-epsilon))) |
---|
1090 | |
---|
1091 | (defmethod epsilon ((m cl:complex)) |
---|
1092 | (epsilon (realpart m))) |
---|
1093 | |
---|
1094 | (defmethod epsilon ((m qd-real)) |
---|
1095 | ;; What is the epsilon value for a quad-double? This is complicated |
---|
1096 | ;; by the fact that things like (+ #q1 #q1q-100) is representable as |
---|
1097 | ;; a quad-double. For most purposes we want epsilon to be close to |
---|
1098 | ;; the 212 bits of precision (4*53 bits) that we normally have with |
---|
1099 | ;; a quad-double. |
---|
1100 | (scale-float +qd-real-one+ -212)) |
---|
1101 | |
---|
1102 | (defmethod epsilon ((m qd-complex)) |
---|
1103 | (epsilon (realpart m))) |
---|
1104 | |
---|
1105 | (defgeneric float-pi (x) |
---|
1106 | (:documentation |
---|
1107 | "Return a floating-point value of the mathematical constant pi that is |
---|
1108 | the same precision as the argument. The argument can be complex.")) |
---|
1109 | |
---|
1110 | (defmethod float-pi ((x cl:rational)) |
---|
1111 | (float pi 1f0)) |
---|
1112 | |
---|
1113 | (defmethod float-pi ((x cl:float)) |
---|
1114 | (float pi x)) |
---|
1115 | |
---|
1116 | (defmethod float-pi ((x qd-real)) |
---|
1117 | +pi+) |
---|
1118 | |
---|
1119 | (defmethod float-pi ((z cl:complex)) |
---|
1120 | (float pi (realpart z))) |
---|
1121 | |
---|
1122 | (defmethod float-pi ((z qd-complex)) |
---|
1123 | +pi+) |
---|
1124 | |
---|
1125 | |
---|
1126 | (define-condition domain-error (simple-error) |
---|
1127 | ((function-name :accessor condition-function-name |
---|
1128 | :initarg :function-name)) |
---|
1129 | (:report (lambda (condition stream) |
---|
1130 | (format stream "Domain Error for function ~S:~&" |
---|
1131 | (condition-function-name condition)) |
---|
1132 | (pprint-logical-block (stream nil :per-line-prefix " ") |
---|
1133 | (apply #'format stream |
---|
1134 | (simple-condition-format-control condition) |
---|
1135 | (simple-condition-format-arguments condition)))))) |
---|