| 1 | ;; -*- mode: common-lisp; package: util.zip -*- |
|---|
| 2 | ;; |
|---|
| 3 | ;; inflate.cl |
|---|
| 4 | ;; |
|---|
| 5 | ;; copyright (c) 1986-2000 Franz Inc, Berkeley, CA |
|---|
| 6 | ;; |
|---|
| 7 | ;; This code is free software; you can redistribute it and/or |
|---|
| 8 | ;; modify it under the terms of the version 2.1 of |
|---|
| 9 | ;; the GNU Lesser General Public License as published by |
|---|
| 10 | ;; the Free Software Foundation, as clarified by the AllegroServe |
|---|
| 11 | ;; prequel found in license-allegroserve.txt. |
|---|
| 12 | ;; |
|---|
| 13 | ;; This code is distributed in the hope that it will be useful, |
|---|
| 14 | ;; but without any warranty; without even the implied warranty of |
|---|
| 15 | ;; merchantability or fitness for a particular purpose. See the GNU |
|---|
| 16 | ;; Lesser General Public License for more details. |
|---|
| 17 | ;; |
|---|
| 18 | ;; Version 2.1 of the GNU Lesser General Public License is in the file |
|---|
| 19 | ;; license-lgpl.txt that was distributed with this file. |
|---|
| 20 | ;; If it is not present, you can access it from |
|---|
| 21 | ;; http://www.gnu.org/copyleft/lesser.txt (until superseded by a newer |
|---|
| 22 | ;; version) or write to the Free Software Foundation, Inc., 59 Temple Place, |
|---|
| 23 | ;; Suite 330, Boston, MA 02111-1307 USA |
|---|
| 24 | ;; |
|---|
| 25 | ;; |
|---|
| 26 | ;; $Id: inflate.cl,v 1.1.4.2 2002/06/19 02:50:55 layer Exp $ |
|---|
| 27 | |
|---|
| 28 | ;; Description: |
|---|
| 29 | ;; inflate a stream of bytes which was compressed with the Deflate |
|---|
| 30 | ;; algorithm |
|---|
| 31 | ;; |
|---|
| 32 | ;; john foderaro, August 2001 |
|---|
| 33 | ;; |
|---|
| 34 | ;;- This code in this file obeys the Lisp Coding Standard found in |
|---|
| 35 | ;;- http://www.franz.com/~jkf/coding_standards.html |
|---|
| 36 | ;;- |
|---|
| 37 | |
|---|
| 38 | |
|---|
| 39 | |
|---|
| 40 | #| |
|---|
| 41 | Programming interface: |
|---|
| 42 | |
|---|
| 43 | (inflate input-stream output-stream) |
|---|
| 44 | - the compressed information from the input-stream is read and |
|---|
| 45 | the uncompressed information is written to the output-stream |
|---|
| 46 | - both streams must support (unsigned-byte 8) element reading and writing |
|---|
| 47 | |
|---|
| 48 | |
|---|
| 49 | (skip-gzip-header input-stream) |
|---|
| 50 | - if the input stream is positioned on the header of a gzip'ed file |
|---|
| 51 | then skip that header. |
|---|
| 52 | - if the input stream is not positioned on a gzip header then nothing |
|---|
| 53 | is done. |
|---|
| 54 | |
|---|
| 55 | |# |
|---|
| 56 | |
|---|
| 57 | |
|---|
| 58 | |
|---|
| 59 | #| |
|---|
| 60 | The Deflate Compression Algorithm |
|---|
| 61 | |
|---|
| 62 | reference: http://www.gzip.org/zlib/rfc-deflate.html |
|---|
| 63 | |
|---|
| 64 | Basic idea: |
|---|
| 65 | Deflation is a means of compressing an octet sequence that |
|---|
| 66 | combines the LZ77 algorithm for marking common substrings and |
|---|
| 67 | Huffman coding to take advantage of different frequency of occurance |
|---|
| 68 | for each possible values in the file. |
|---|
| 69 | This algorithm may not be as easy to understand or as efficient |
|---|
| 70 | as the LZW compression algorithm but Deflate does have the big |
|---|
| 71 | advantage in that it is not patented. Thus Deflate is a very |
|---|
| 72 | widely used. Nowdays it's the most common compression method |
|---|
| 73 | used in Windows Zip programs (e.g. Winzip) and in the Unix gzip program. |
|---|
| 74 | Java jar files, being just zip files, also use this compression method. |
|---|
| 75 | |
|---|
| 76 | |
|---|
| 77 | Lempel-Ziv 1977 (LZ77): |
|---|
| 78 | An octet sequence often contains repeated subsequences. The LZ algorithm |
|---|
| 79 | compresses a file by replacing repeated substrings with (Length,Distance) |
|---|
| 80 | markers which mean during decompression: Go back Distance octets |
|---|
| 81 | in output stream and copy Length bytes to the output stream. |
|---|
| 82 | |
|---|
| 83 | Huffman Coding: |
|---|
| 84 | A Huffman code for a set of values V assigns a unique bitsequence |
|---|
| 85 | to each value in V. A bitsequence is a sequence of 0's and 1'. |
|---|
| 86 | An important property of Huffman codes is that if X is a bitsequence |
|---|
| 87 | for a value in V then no other value in V has a bitsequence |
|---|
| 88 | with X as a prefix of that sequence. This means that if you see |
|---|
| 89 | the bitsequence X in the stream you know that this denotes the value |
|---|
| 90 | v and you don't have to read any more bits. |
|---|
| 91 | |
|---|
| 92 | |
|---|
| 93 | Blocks: |
|---|
| 94 | A deflated file is a sequence of blocks. There are three types of |
|---|
| 95 | blocks: |
|---|
| 96 | 1. uncompressed - The block simply contains the same sequence of |
|---|
| 97 | octets as were found in the input stream. This type of block |
|---|
| 98 | is useful when the input stream has already been compressed (e.g. |
|---|
| 99 | it's a jpg or gif file) as compressing a compressed file often |
|---|
| 100 | results in the file getting larger. |
|---|
| 101 | |
|---|
| 102 | 2. compressed with fixed Huffman code - The block contains a |
|---|
| 103 | huffman-coded LZ77 compressed bitsequence. The huffman code |
|---|
| 104 | used is specified by the deflate algorithm. This type of block |
|---|
| 105 | is useful when the octet sequence is short since in that case |
|---|
| 106 | the overhead of creating a custom huffman code is more than is gained |
|---|
| 107 | by that custom code. |
|---|
| 108 | |
|---|
| 109 | 3. compressed with a custom Huffman code - The block contains |
|---|
| 110 | a description of a Huffman code to be used in this block only |
|---|
| 111 | and then a Huffman-code LZ77 compressed bitsequence. The values |
|---|
| 112 | that describe the custome huffman tree are themselves huffman coded. |
|---|
| 113 | |
|---|
| 114 | |
|---|
| 115 | |
|---|
| 116 | |# |
|---|
| 117 | |
|---|
| 118 | (defpackage :util.zip (:use :common-lisp :excl) |
|---|
| 119 | (:export #:inflate |
|---|
| 120 | #:skip-gzip-header)) |
|---|
| 121 | |
|---|
| 122 | |
|---|
| 123 | (in-package :util.zip) |
|---|
| 124 | |
|---|
| 125 | (provide :inflate) |
|---|
| 126 | |
|---|
| 127 | (defun inflate (p op) |
|---|
| 128 | ;; user callable |
|---|
| 129 | ;; inflate the stream p into the stream op |
|---|
| 130 | ;; both streams should be unsigned-byte 8 |
|---|
| 131 | ;; |
|---|
| 132 | (let ((br (new-bit-reader p)) |
|---|
| 133 | (buffer (make-array (* 32 1024) :element-type '(unsigned-byte 8))) |
|---|
| 134 | (end 0)) |
|---|
| 135 | (loop |
|---|
| 136 | (if* (null (setq end (process-deflate-block br op buffer end))) |
|---|
| 137 | then ; last block, we're all done |
|---|
| 138 | (return))))) |
|---|
| 139 | |
|---|
| 140 | |
|---|
| 141 | |
|---|
| 142 | |
|---|
| 143 | ;;; ------------ gzip support |
|---|
| 144 | ; |
|---|
| 145 | ; gzip preceeds files with a header and the only support we need |
|---|
| 146 | ; give to handle gzip files is the ability to skip the header |
|---|
| 147 | ; and get to the meat of the file |
|---|
| 148 | |
|---|
| 149 | |
|---|
| 150 | ; gzip constants |
|---|
| 151 | |
|---|
| 152 | ; compression strategies (only one supported) |
|---|
| 153 | (defconstant z_deflated 8) |
|---|
| 154 | |
|---|
| 155 | ; flag bits |
|---|
| 156 | (defconstant gz_ascii_flags #x01) ; file probably ascii |
|---|
| 157 | (defconstant gz_head_crc #x02) ; header crc present |
|---|
| 158 | (defconstant gz_extra_field #x04) ; extra field present |
|---|
| 159 | (defconstant gz_orig_name #x08) ; original file name present |
|---|
| 160 | (defconstant gz_comment #x10) ; file comment present |
|---|
| 161 | (defconstant gz_reserved #xe0) ; no bits allowed on here |
|---|
| 162 | |
|---|
| 163 | (defun skip-gzip-header (p) |
|---|
| 164 | ;; If the next thing in the stream p is gzip header then skip |
|---|
| 165 | ;; past it and return t. |
|---|
| 166 | ;; If it's not a gzip header than return nil |
|---|
| 167 | ;; If it's starts to look like a gzip header but turns out to |
|---|
| 168 | ;; not be valid signal an error. Note that the first byte of |
|---|
| 169 | ;; a gzip header is an illegal byte to begin a deflated stream so |
|---|
| 170 | ;; that if the first byte matches a gzip header but the rest do not |
|---|
| 171 | ;; then the stream was positioned at neither a gzip header nor a |
|---|
| 172 | ;; deflated stream |
|---|
| 173 | ; |
|---|
| 174 | ;; see check_header in gzio.c in rpm zlib-1.1.3 (or variant) |
|---|
| 175 | ;; for details on what's in the header. |
|---|
| 176 | |
|---|
| 177 | (let (method flags) |
|---|
| 178 | |
|---|
| 179 | ; look for magic number |
|---|
| 180 | (if* (not (eql #x1f (read-byte p))) |
|---|
| 181 | then ; not a gzip header, may be a deflate block |
|---|
| 182 | (unread-char (code-char #x1f) p) |
|---|
| 183 | (return-from skip-gzip-header nil)) |
|---|
| 184 | |
|---|
| 185 | |
|---|
| 186 | ; now check the second magic number |
|---|
| 187 | (if* (not (eql #x8b (read-byte p))) |
|---|
| 188 | then (error "non gzip magic number")) |
|---|
| 189 | |
|---|
| 190 | (setq method (read-byte p) |
|---|
| 191 | flags (read-byte p)) |
|---|
| 192 | |
|---|
| 193 | (if* (or (not (eql method z_deflated)) |
|---|
| 194 | (not (zerop (logand flags gz_reserved)))) |
|---|
| 195 | then (error "bad method/flags in header")) |
|---|
| 196 | |
|---|
| 197 | ; discard time, xflags and os code */ |
|---|
| 198 | (dotimes (i 6) (read-byte p)) |
|---|
| 199 | |
|---|
| 200 | ; discard extra field if present |
|---|
| 201 | (if* (logtest flags gz_extra_field) |
|---|
| 202 | then (let ((length (+ (read-byte p) |
|---|
| 203 | (ash (read-byte p) 8)))) |
|---|
| 204 | (dotimes (i length) (read-byte p)))) |
|---|
| 205 | |
|---|
| 206 | (if* (logtest flags gz_orig_name) |
|---|
| 207 | then ; discard name of file, null terminated |
|---|
| 208 | (do ((val (read-byte p) (read-byte p))) |
|---|
| 209 | ((zerop val)))) |
|---|
| 210 | |
|---|
| 211 | (if* (logtest flags gz_comment) |
|---|
| 212 | then ; discard comment, null terminated |
|---|
| 213 | (do ((val (read-byte p) (read-byte p))) |
|---|
| 214 | ((zerop val)))) |
|---|
| 215 | |
|---|
| 216 | (if* (logtest flags gz_head_crc) |
|---|
| 217 | then ; discard header crc |
|---|
| 218 | (dotimes (i 2) (read-byte p))) |
|---|
| 219 | |
|---|
| 220 | ; success! |
|---|
| 221 | t |
|---|
| 222 | )) |
|---|
| 223 | |
|---|
| 224 | ;;;----------- end gzip support |
|---|
| 225 | |
|---|
| 226 | |
|---|
| 227 | |
|---|
| 228 | ;;;----------- support for reading bitfields from a stream |
|---|
| 229 | |
|---|
| 230 | |
|---|
| 231 | (defstruct bit-reader |
|---|
| 232 | stream |
|---|
| 233 | last-byte ; last byte read, possibly two combined bytes too |
|---|
| 234 | bits ; bits left of last byte to use |
|---|
| 235 | ) |
|---|
| 236 | |
|---|
| 237 | (defparameter *maskarray* |
|---|
| 238 | ;; for a bit length, mask off junk bits |
|---|
| 239 | (make-array 17 |
|---|
| 240 | :initial-contents |
|---|
| 241 | '(#x0 |
|---|
| 242 | #x1 #x3 #x7 #xf |
|---|
| 243 | #x1f #x3f #x7f #xff |
|---|
| 244 | #x1ff #x3ff #x7ff #xfff |
|---|
| 245 | #x1fff #x3fff #x7fff #xffff))) |
|---|
| 246 | |
|---|
| 247 | ;; bit reader |
|---|
| 248 | (defun new-bit-reader (stream) |
|---|
| 249 | ; create and initialize bit reader |
|---|
| 250 | (make-bit-reader :stream stream :last-byte 0 :bits 0)) |
|---|
| 251 | |
|---|
| 252 | (defun reset-bit-reader (br) |
|---|
| 253 | ; clear out unused bit of the current byte |
|---|
| 254 | (setf (bit-reader-bits br) 0)) |
|---|
| 255 | |
|---|
| 256 | (defun read-bits (br count) |
|---|
| 257 | ;; return a value from the current bit reader. |
|---|
| 258 | ;; the count can be from 1 to 16 |
|---|
| 259 | ;; |
|---|
| 260 | |
|---|
| 261 | (if* (eql count 0) |
|---|
| 262 | then (return-from read-bits 0)) |
|---|
| 263 | |
|---|
| 264 | |
|---|
| 265 | (let ((last-byte (bit-reader-last-byte br)) |
|---|
| 266 | (bits (bit-reader-bits br))) |
|---|
| 267 | (loop |
|---|
| 268 | (if* (>= bits count) |
|---|
| 269 | then ;we have enough now |
|---|
| 270 | (if* (> bits count) |
|---|
| 271 | then ; we have some left over |
|---|
| 272 | (setf (bit-reader-last-byte br) |
|---|
| 273 | (ash last-byte (- count))) |
|---|
| 274 | (setf (bit-reader-bits br) (- bits count)) |
|---|
| 275 | (return (logand last-byte (svref *maskarray* count))) |
|---|
| 276 | else ; no bits left |
|---|
| 277 | (setf (bit-reader-bits br) 0) |
|---|
| 278 | (setf (bit-reader-last-byte br) 0) |
|---|
| 279 | (return last-byte) |
|---|
| 280 | ) |
|---|
| 281 | else ; need a new byte |
|---|
| 282 | (let ((new-byte (read-byte (bit-reader-stream br)))) |
|---|
| 283 | (setq last-byte (+ last-byte |
|---|
| 284 | (ash new-byte bits))) |
|---|
| 285 | (incf bits 8)))))) |
|---|
| 286 | |
|---|
| 287 | |
|---|
| 288 | |
|---|
| 289 | ;;;----------- end bitfield reading |
|---|
| 290 | |
|---|
| 291 | |
|---|
| 292 | |
|---|
| 293 | |
|---|
| 294 | ;;;----------- build constant tables needed by the algorithm |
|---|
| 295 | |
|---|
| 296 | ;; The tables needed to decode length and distance values |
|---|
| 297 | ;; A compressed file contains a sequence of literal character values |
|---|
| 298 | ;; or (length,distance) pairs. The length is computed by taking |
|---|
| 299 | ;; the length-value in the file and using these tables to bind |
|---|
| 300 | ;; a base length value and the number of extra bits to read from the file |
|---|
| 301 | ;; and then to add to the length value. |
|---|
| 302 | ;; The same is done for distance. |
|---|
| 303 | |
|---|
| 304 | (defvar *base-length*) ; array mapping code to length value |
|---|
| 305 | (defvar *length-extra-bits*) ; array saying how many more bitsworth to read |
|---|
| 306 | |
|---|
| 307 | (defvar *base-distance*) |
|---|
| 308 | (defvar *distance-extra-bits*) |
|---|
| 309 | |
|---|
| 310 | |
|---|
| 311 | ; build those arrays at load time: |
|---|
| 312 | |
|---|
| 313 | (progn |
|---|
| 314 | (setq *base-length* (make-array (1+ (- 285 257))) |
|---|
| 315 | *length-extra-bits* (make-array (1+ (- 285 257)))) |
|---|
| 316 | |
|---|
| 317 | (let ((len 3) |
|---|
| 318 | (ind 0)) |
|---|
| 319 | (dolist (ent '((8 0) ; count and number of extra bits |
|---|
| 320 | (4 1) (4 2) (4 3) (4 4) (4 5) (1 0))) |
|---|
| 321 | (dotimes (i (car ent)) |
|---|
| 322 | (setf (svref *base-length* ind) len) |
|---|
| 323 | (setf (svref *length-extra-bits* ind) (cadr ent)) |
|---|
| 324 | (incf ind 1) |
|---|
| 325 | (incf len (ash 1 (cadr ent))) |
|---|
| 326 | ) |
|---|
| 327 | ; special case, code 285 is length 258. |
|---|
| 328 | (setf (svref *base-length* (- 285 257)) 258) |
|---|
| 329 | )) |
|---|
| 330 | |
|---|
| 331 | (setq *base-distance* (make-array (1+ (- 29 0))) |
|---|
| 332 | *distance-extra-bits* (make-array (1+ (- 29 0)))) |
|---|
| 333 | |
|---|
| 334 | (let ((dist 1) |
|---|
| 335 | (ind 0)) |
|---|
| 336 | (dolist (ent '((4 0) ; count and number of extra bits |
|---|
| 337 | (2 1) (2 2) (2 3) (2 4) (2 5) (2 6) (2 7) (2 8) |
|---|
| 338 | (2 9) (2 10) (2 11) (2 12) (2 13))) |
|---|
| 339 | (dotimes (i (car ent)) |
|---|
| 340 | (setf (svref *base-distance* ind) dist) |
|---|
| 341 | (setf (svref *distance-extra-bits* ind) (cadr ent)) |
|---|
| 342 | (incf ind 1) |
|---|
| 343 | (incf dist (ash 1 (cadr ent))))))) |
|---|
| 344 | |
|---|
| 345 | |
|---|
| 346 | |
|---|
| 347 | |
|---|
| 348 | ;;;----------- end table building |
|---|
| 349 | |
|---|
| 350 | |
|---|
| 351 | |
|---|
| 352 | ;;;----------- Huffman tree support |
|---|
| 353 | |
|---|
| 354 | (defstruct (bitinfo (:type list)) |
|---|
| 355 | ;; when we describe a range of values and the code width we |
|---|
| 356 | ;; use a list of three elements. this structure describes it |
|---|
| 357 | minval |
|---|
| 358 | maxval |
|---|
| 359 | bitwidth) |
|---|
| 360 | |
|---|
| 361 | |
|---|
| 362 | ;test case |
|---|
| 363 | ; (generate-huffman-tree '((0 4 3) (5 5 2) (6 7 4))) |
|---|
| 364 | ; will generate sample table from the Deutsch paper |
|---|
| 365 | ; |
|---|
| 366 | |
|---|
| 367 | (defun generate-huffman-tree (bitinfo) |
|---|
| 368 | ;; bitinfo is a list of bitinfo items (minval maxval bitwidth) |
|---|
| 369 | ;; which means that values from minval through maxval are |
|---|
| 370 | ;; to be represented by codes of width bitwidth. |
|---|
| 371 | ;; |
|---|
| 372 | ;; we return two valuse: the huffman tree and the mininum bit width |
|---|
| 373 | ;; |
|---|
| 374 | (let ((maxval 0) |
|---|
| 375 | (minval most-positive-fixnum) |
|---|
| 376 | (maxbitwidth 0) |
|---|
| 377 | (minbitwidth most-positive-fixnum) |
|---|
| 378 | bitwidthcounts |
|---|
| 379 | valuecode |
|---|
| 380 | valuewidth |
|---|
| 381 | nextcode |
|---|
| 382 | ) |
|---|
| 383 | ; find out the range of values (well the max) and the max bit width |
|---|
| 384 | (dolist (bi bitinfo) |
|---|
| 385 | (setq maxval (max maxval (bitinfo-maxval bi))) |
|---|
| 386 | (setq minval (min minval (bitinfo-minval bi))) |
|---|
| 387 | (setq maxbitwidth (max maxbitwidth (bitinfo-bitwidth bi))) |
|---|
| 388 | (setq minbitwidth (min minbitwidth (bitinfo-bitwidth bi))) |
|---|
| 389 | ) |
|---|
| 390 | |
|---|
| 391 | ; per bitwidth arrays |
|---|
| 392 | (setq bitwidthcounts (make-array (1+ maxbitwidth) |
|---|
| 393 | :initial-element 0)) |
|---|
| 394 | (setq nextcode (make-array (1+ maxbitwidth) |
|---|
| 395 | :initial-element 0)) |
|---|
| 396 | |
|---|
| 397 | ; per value arrays |
|---|
| 398 | (setq valuecode (make-array (1+ (- maxval minval)))) ; huffman code chose |
|---|
| 399 | (setq valuewidth (make-array (1+ (- maxval minval)) |
|---|
| 400 | :initial-element 0)) ; bit width |
|---|
| 401 | |
|---|
| 402 | (dolist (bi bitinfo) |
|---|
| 403 | ; set valuewidth array from the given data |
|---|
| 404 | (do ((v (bitinfo-minval bi) (1+ v))) |
|---|
| 405 | ((> v (bitinfo-maxval bi))) |
|---|
| 406 | (setf (svref valuewidth (- v minval)) (bitinfo-bitwidth bi))) |
|---|
| 407 | |
|---|
| 408 | ; keep track of how many huffman codes will have a certain bit width |
|---|
| 409 | (incf (svref bitwidthcounts (bitinfo-bitwidth bi)) |
|---|
| 410 | (1+ (- (bitinfo-maxval bi) (bitinfo-minval bi)))) |
|---|
| 411 | ) |
|---|
| 412 | |
|---|
| 413 | |
|---|
| 414 | |
|---|
| 415 | ; compute the starting code for each bit width |
|---|
| 416 | (let ((code 0)) |
|---|
| 417 | (dotimes (widthm1 maxbitwidth) |
|---|
| 418 | (setq code |
|---|
| 419 | (ash (+ code (svref bitwidthcounts widthm1)) 1)) |
|---|
| 420 | (setf (svref nextcode (1+ widthm1)) code))) |
|---|
| 421 | |
|---|
| 422 | ; compute the huffman code for each value |
|---|
| 423 | (do ((v minval (1+ v))) |
|---|
| 424 | ((> v maxval)) |
|---|
| 425 | (let ((width (svref valuewidth (- v minval)))) |
|---|
| 426 | (if* (not (zerop width)) |
|---|
| 427 | then ; must assign a code |
|---|
| 428 | (setf (svref valuecode (- v minval)) |
|---|
| 429 | (svref nextcode width)) |
|---|
| 430 | (incf (svref nextcode width))))) |
|---|
| 431 | |
|---|
| 432 | ;; now we know the code for each value in the valuecode array |
|---|
| 433 | ;; |
|---|
| 434 | ;; now compute the tree |
|---|
| 435 | (values (build-huffman-tree |
|---|
| 436 | minval |
|---|
| 437 | (mapcar #'(lambda (bi) (cons (car bi) (cadr bi))) bitinfo) |
|---|
| 438 | valuecode valuewidth 1) |
|---|
| 439 | ; second value useful for decoding: |
|---|
| 440 | minbitwidth))) |
|---|
| 441 | |
|---|
| 442 | |
|---|
| 443 | (defun build-huffman-tree (minval minmaxes valuecode valuewidth pos) |
|---|
| 444 | ;; compute a huffman cons tree |
|---|
| 445 | ;; minmaxes is a list of conses. each cons |
|---|
| 446 | ;; representing a (min . max) range of values. |
|---|
| 447 | ;; |
|---|
| 448 | |
|---|
| 449 | (multiple-value-bind (zero one) (split-on-position minval minmaxes |
|---|
| 450 | valuecode |
|---|
| 451 | valuewidth |
|---|
| 452 | pos) |
|---|
| 453 | (cons (if* (consp zero) |
|---|
| 454 | then (build-huffman-tree minval |
|---|
| 455 | zero valuecode valuewidth (1+ pos)) |
|---|
| 456 | else zero) |
|---|
| 457 | (if* (consp one) |
|---|
| 458 | then (build-huffman-tree minval one valuecode valuewidth (1+ pos)) |
|---|
| 459 | else one)))) |
|---|
| 460 | |
|---|
| 461 | (defun split-on-position (minval minmaxes valuecode valuewidth pos) |
|---|
| 462 | ;; compute those values that have a zero in the pos (1 based) position |
|---|
| 463 | ;; of their code and those that have one in that position. |
|---|
| 464 | ;; return two values, the zero set and the one set. |
|---|
| 465 | ;; The position is from the msbit of the huffman code. |
|---|
| 466 | ;; |
|---|
| 467 | ;; If the value of the specified pos selects a specific value |
|---|
| 468 | ;; and no further bits need be read to identify that value then |
|---|
| 469 | ;; we return that value rather than a list of conses. |
|---|
| 470 | |
|---|
| 471 | (let (zero one) |
|---|
| 472 | (dolist (mm minmaxes) |
|---|
| 473 | (do ((v (car mm) (1+ v))) |
|---|
| 474 | ((> v (cdr mm))) |
|---|
| 475 | (let ((width (svref valuewidth (- v minval))) |
|---|
| 476 | (code (svref valuecode (- v minval)))) |
|---|
| 477 | (if* (logbitp (- width pos) code) |
|---|
| 478 | then ; one bit set |
|---|
| 479 | (if* (eql width pos) |
|---|
| 480 | then ; last bit |
|---|
| 481 | (setq one v) |
|---|
| 482 | else ; more bits to check |
|---|
| 483 | (let ((firstone (car one))) |
|---|
| 484 | (if* (and firstone |
|---|
| 485 | (eq (cdr firstone) (1- v))) |
|---|
| 486 | then ; increase renge |
|---|
| 487 | (setf (cdr firstone) v) |
|---|
| 488 | else (push (cons v v) one)))) |
|---|
| 489 | else ; zero bit set |
|---|
| 490 | (if* (eql width pos) |
|---|
| 491 | then ; last bit |
|---|
| 492 | (setq zero v) |
|---|
| 493 | else ; more bits to check |
|---|
| 494 | (let ((firstzero (car zero))) |
|---|
| 495 | (if* (and firstzero |
|---|
| 496 | (eq (cdr firstzero) (1- v))) |
|---|
| 497 | then ; increase renge |
|---|
| 498 | (setf (cdr firstzero) v) |
|---|
| 499 | else (push (cons v v) zero)))))))) |
|---|
| 500 | (values |
|---|
| 501 | (if* (consp zero) then (nreverse zero) else zero) ; order numerically |
|---|
| 502 | (if* (consp one) then (nreverse one) else one)))) |
|---|
| 503 | |
|---|
| 504 | |
|---|
| 505 | (defun generate-huffman-tree-from-vector (vector start end) |
|---|
| 506 | ;; generate huffman tree from items in the vector from start to end-1 |
|---|
| 507 | ;; assume start corresponds to value 0 in the tree |
|---|
| 508 | (do ((i start (1+ i)) |
|---|
| 509 | (val 0 (1+ val)) |
|---|
| 510 | (res)) |
|---|
| 511 | ((>= i end) |
|---|
| 512 | (generate-huffman-tree (nreverse res))) |
|---|
| 513 | (let ((len (svref vector i))) |
|---|
| 514 | (if* (> len 0) |
|---|
| 515 | then (push (list val val len) res))))) |
|---|
| 516 | |
|---|
| 517 | |
|---|
| 518 | |
|---|
| 519 | |
|---|
| 520 | |
|---|
| 521 | ;; the huffman tree to use for type 1 blocks |
|---|
| 522 | ;; |
|---|
| 523 | (defparameter *fixed-huffman-tree* |
|---|
| 524 | (generate-huffman-tree '((0 143 8) (144 255 9) (256 279 7) (280 287 8)))) |
|---|
| 525 | |
|---|
| 526 | ;; distance are represented by a trivial huffman code |
|---|
| 527 | (defparameter *fixed-huffman-distance-tree* |
|---|
| 528 | (generate-huffman-tree '((0 31 5)))) |
|---|
| 529 | |
|---|
| 530 | |
|---|
| 531 | ;;;----------- end Huffman support |
|---|
| 532 | |
|---|
| 533 | |
|---|
| 534 | |
|---|
| 535 | |
|---|
| 536 | (defun process-deflate-block (br op buffer end) |
|---|
| 537 | ;; br is a bit stream, op is the output stream |
|---|
| 538 | ;; process the next block in the stream |
|---|
| 539 | ;; return false if this is the last block of data else |
|---|
| 540 | ;; return the next index into the buffer |
|---|
| 541 | (let ((bfinal (read-bits br 1)) |
|---|
| 542 | (btype (read-bits br 2))) |
|---|
| 543 | |
|---|
| 544 | (setq end |
|---|
| 545 | (case btype |
|---|
| 546 | (0 (process-non-compressed-block br op buffer end)) |
|---|
| 547 | (1 (process-fixed-huffman-block br op buffer end)) |
|---|
| 548 | (2 (process-dynamic-huffman-block br op buffer end)) |
|---|
| 549 | (3 (error "illegal deflate block value")))) |
|---|
| 550 | (if* (eql bfinal 1) |
|---|
| 551 | then (flush-buffer op buffer end) |
|---|
| 552 | nil |
|---|
| 553 | else end) |
|---|
| 554 | )) |
|---|
| 555 | |
|---|
| 556 | |
|---|
| 557 | |
|---|
| 558 | (defun process-non-compressed-block (br op buffer end) |
|---|
| 559 | ;; process a block of uncompressed data |
|---|
| 560 | (reset-bit-reader br) |
|---|
| 561 | (let ((p (bit-reader-stream br))) |
|---|
| 562 | (let ((len (read-uword p)) |
|---|
| 563 | (onecomplen (read-uword p))) |
|---|
| 564 | (if* (not (eql len (logxor #xffff onecomplen))) |
|---|
| 565 | then (error "bad length value in non compressed block")) |
|---|
| 566 | (dotimes (i len) |
|---|
| 567 | (setq end (put-byte-in-buffer op (read-byte p) buffer end)))) |
|---|
| 568 | end)) |
|---|
| 569 | |
|---|
| 570 | (defun read-uword (stream) |
|---|
| 571 | ;; read a little endian value |
|---|
| 572 | (+ (read-byte stream) (ash (read-byte stream) 8))) |
|---|
| 573 | |
|---|
| 574 | (defun put-byte-in-buffer (op byte buffer end) |
|---|
| 575 | ;; store the next output byte in the buffer |
|---|
| 576 | (if* (>= end (length buffer)) |
|---|
| 577 | then (flush-buffer op buffer end) |
|---|
| 578 | (setq end 0)) |
|---|
| 579 | (setf (aref buffer end) byte) |
|---|
| 580 | (1+ end)) |
|---|
| 581 | |
|---|
| 582 | (defun flush-buffer (op buffer end) |
|---|
| 583 | ;; send bytes to the output stream. If op isn't a stream |
|---|
| 584 | ;; then it must be a function to funcall to take the bytes. |
|---|
| 585 | (if* (> end 0) |
|---|
| 586 | then (if* (streamp op) |
|---|
| 587 | then (write-sequence buffer op :end end) |
|---|
| 588 | else (funcall op buffer end)))) |
|---|
| 589 | |
|---|
| 590 | |
|---|
| 591 | |
|---|
| 592 | |
|---|
| 593 | |
|---|
| 594 | (defun process-fixed-huffman-block (br op buffer end) |
|---|
| 595 | ;; process a huffman block with the standard huffman tree |
|---|
| 596 | ;; |
|---|
| 597 | (process-huffman-block br op *fixed-huffman-tree* 7 *fixed-huffman-distance-tree* 5 |
|---|
| 598 | buffer end)) |
|---|
| 599 | |
|---|
| 600 | (defun process-huffman-block (br op |
|---|
| 601 | lengthlit-tree minwidth |
|---|
| 602 | distance-tree mindistwidth |
|---|
| 603 | buffer end) |
|---|
| 604 | ;; the common code for blocks of type 1 and 2 that does |
|---|
| 605 | ;; the decompression given a length/literal huffman tree |
|---|
| 606 | ;; and a distance huffman tree. |
|---|
| 607 | ;; If the distance tree is nil then we use the trivial huffman |
|---|
| 608 | ;; code from the algorithm. |
|---|
| 609 | ;; |
|---|
| 610 | (let* ((bufflen (length buffer)) |
|---|
| 611 | length |
|---|
| 612 | distance |
|---|
| 613 | ) |
|---|
| 614 | |
|---|
| 615 | |
|---|
| 616 | (loop |
|---|
| 617 | (let ((value (decode-huffman-tree br lengthlit-tree minwidth))) |
|---|
| 618 | (if* (< value 256) |
|---|
| 619 | then ; output and add to buffer |
|---|
| 620 | (setq end (put-byte-in-buffer op value buffer end)) |
|---|
| 621 | |
|---|
| 622 | elseif (eql value 256) |
|---|
| 623 | then (return) ; end of block |
|---|
| 624 | else ; we have a length byte |
|---|
| 625 | ; compute length, distance |
|---|
| 626 | |
|---|
| 627 | (let ((adj-code (- value 257))) |
|---|
| 628 | (setq length (+ (svref *base-length* adj-code) |
|---|
| 629 | (read-bits br (svref *length-extra-bits* |
|---|
| 630 | adj-code))))) |
|---|
| 631 | |
|---|
| 632 | (let ((dist-code (if* distance-tree |
|---|
| 633 | then (decode-huffman-tree br |
|---|
| 634 | distance-tree |
|---|
| 635 | mindistwidth) |
|---|
| 636 | else (read-bits br 5)))) |
|---|
| 637 | (setq distance |
|---|
| 638 | (+ (svref *base-distance* dist-code) |
|---|
| 639 | (read-bits br (svref *distance-extra-bits* |
|---|
| 640 | dist-code))))) |
|---|
| 641 | |
|---|
| 642 | ; copy in bytes |
|---|
| 643 | (do ((i (mod (- end distance) bufflen) (1+ i)) |
|---|
| 644 | (count length (1- count))) |
|---|
| 645 | ((<= count 0)) |
|---|
| 646 | (if* (>= i bufflen) then (setf i 0)) |
|---|
| 647 | (setq end (put-byte-in-buffer op |
|---|
| 648 | (aref buffer i) |
|---|
| 649 | buffer |
|---|
| 650 | end)))))) |
|---|
| 651 | ; return where we left off |
|---|
| 652 | end)) |
|---|
| 653 | |
|---|
| 654 | |
|---|
| 655 | |
|---|
| 656 | (defparameter *code-index* |
|---|
| 657 | ;; order of elements in the code index values |
|---|
| 658 | ;; pretty crazy, eh? |
|---|
| 659 | (make-array 19 |
|---|
| 660 | :initial-contents |
|---|
| 661 | '(16 17 18 0 8 7 9 6 10 5 11 4 12 3 13 2 14 1 15))) |
|---|
| 662 | |
|---|
| 663 | |
|---|
| 664 | (defun process-dynamic-huffman-block (br op buffer end) |
|---|
| 665 | ;; process a block that includes a personalized huffman tree |
|---|
| 666 | ;; just for this block |
|---|
| 667 | (let ((hlit (read-bits br 5)) |
|---|
| 668 | (hdist (read-bits br 5)) |
|---|
| 669 | (hclen (read-bits br 4)) |
|---|
| 670 | |
|---|
| 671 | code-length-huffman-tree |
|---|
| 672 | (minlen 9999) |
|---|
| 673 | ) |
|---|
| 674 | |
|---|
| 675 | ; read in the huffman code width of each of the numbers |
|---|
| 676 | ; from 0 18... this will be then used to create a huffman tree |
|---|
| 677 | ; |
|---|
| 678 | (let ((codevec (make-array 19 :initial-element 0)) |
|---|
| 679 | (len)) |
|---|
| 680 | |
|---|
| 681 | (dotimes (i (+ hclen 4)) |
|---|
| 682 | (setf (svref codevec |
|---|
| 683 | (svref *code-index* i)) |
|---|
| 684 | (setq len (read-bits br 3))) |
|---|
| 685 | (if* (> len 0) then (setq minlen (min len minlen)))) |
|---|
| 686 | |
|---|
| 687 | |
|---|
| 688 | |
|---|
| 689 | (setq code-length-huffman-tree |
|---|
| 690 | (generate-huffman-tree-from-vector codevec 0 (length codevec)))) |
|---|
| 691 | |
|---|
| 692 | ; now we're in position to read the code lengths for the |
|---|
| 693 | ; huffman table that will allow us to read the data. |
|---|
| 694 | ; (Is this a nutty algorithm or what??) |
|---|
| 695 | ; |
|---|
| 696 | (let ((bigvec (make-array (+ hlit 257 hdist 1) |
|---|
| 697 | :initial-element 0)) |
|---|
| 698 | (index 0)) |
|---|
| 699 | (loop |
|---|
| 700 | (if* (>= index (length bigvec)) then (return)) |
|---|
| 701 | (let ((val (decode-huffman-tree br code-length-huffman-tree minlen))) |
|---|
| 702 | (if* (<= val 15) |
|---|
| 703 | then ; literal value |
|---|
| 704 | (setf (svref bigvec index) val) |
|---|
| 705 | (incf index) |
|---|
| 706 | elseif (eql val 16) |
|---|
| 707 | then ; repeat prev |
|---|
| 708 | (let ((prev-val (svref bigvec (1- index)))) |
|---|
| 709 | (dotimes (i (+ 3 (read-bits br 2))) |
|---|
| 710 | (setf (svref bigvec index) prev-val) |
|---|
| 711 | (incf index))) |
|---|
| 712 | elseif (eq val 17) |
|---|
| 713 | then ; repeat zero |
|---|
| 714 | (dotimes (i (+ 3 (read-bits br 3))) |
|---|
| 715 | (setf (svref bigvec index) 0) |
|---|
| 716 | (incf index)) |
|---|
| 717 | elseif (eq val 18) |
|---|
| 718 | then ; repeat zero a lot |
|---|
| 719 | (dotimes (i (+ 11 (read-bits br 7))) |
|---|
| 720 | (setf (svref bigvec index) 0) |
|---|
| 721 | (incf index))))) |
|---|
| 722 | |
|---|
| 723 | (let (literal-length-huffman litlen-width |
|---|
| 724 | distance-huffman distance-width) |
|---|
| 725 | (multiple-value-setq (literal-length-huffman litlen-width) |
|---|
| 726 | (generate-huffman-tree-from-vector bigvec 0 (+ hlit 257))) |
|---|
| 727 | |
|---|
| 728 | (multiple-value-setq (distance-huffman distance-width) |
|---|
| 729 | (generate-huffman-tree-from-vector bigvec (+ hlit 257) |
|---|
| 730 | (length bigvec))) |
|---|
| 731 | |
|---|
| 732 | (process-huffman-block br op literal-length-huffman litlen-width |
|---|
| 733 | distance-huffman distance-width |
|---|
| 734 | buffer end) |
|---|
| 735 | )))) |
|---|
| 736 | |
|---|
| 737 | |
|---|
| 738 | |
|---|
| 739 | (defun decode-huffman-tree (br tree minbits) |
|---|
| 740 | ;; find the next huffman encoded value. |
|---|
| 741 | ; the minimum length of a huffman code is minbits so |
|---|
| 742 | ; grab that many bits right away to speed processing and the |
|---|
| 743 | ; go bit by bit until the answer is found |
|---|
| 744 | (let ((startval (read-bits br minbits))) |
|---|
| 745 | (dotimes (i minbits) |
|---|
| 746 | (if* (logtest 1 startval) |
|---|
| 747 | then (setq tree (cdr tree)) |
|---|
| 748 | else (setq tree (car tree))) |
|---|
| 749 | (setq startval (ash startval -1))) |
|---|
| 750 | (loop |
|---|
| 751 | (if* (atom tree) |
|---|
| 752 | then (return tree) |
|---|
| 753 | else (if* (eql 1 (read-bits br 1)) |
|---|
| 754 | then (setq tree (cdr tree)) |
|---|
| 755 | else (setq tree (car tree))))))) |
|---|
| 756 | |
|---|
| 757 | |
|---|
| 758 | |
|---|
| 759 | |
|---|
| 760 | |
|---|
| 761 | |
|---|
| 762 | ;;; test case... |
|---|
| 763 | ;; Read file created with gzip and write the uncompressed version |
|---|
| 764 | ;; to another file. |
|---|
| 765 | ;; |
|---|
| 766 | ;; Porting note: the open below works on ACL since it creates |
|---|
| 767 | ;; a bivalent simple-stream. If you run this on other lispsj |
|---|
| 768 | ;; you'll want to specify an :element-type of '(unsigned-byte 8) |
|---|
| 769 | ;; |
|---|
| 770 | #+ignore |
|---|
| 771 | (defun testit (&optional (filename "foo.n.gz") (output-filename "out")) |
|---|
| 772 | (with-open-file (p filename :direction :input) |
|---|
| 773 | (skip-gzip-header p) |
|---|
| 774 | (with-open-file (op output-filename :direction :output |
|---|
| 775 | :if-exists :supersede) |
|---|
| 776 | (inflate p op)))) |
|---|