Carlson Rc
(carlson-rc x y)
Carlson's Rc function defined by
Rc(x,y) = integrate(1/2*(t+x)^(-1/2)*(t+y)^(-1), t, 0, inf)
Some interesting identities:
log(x) = (x-1)*Rc(((1+x)/2)^2, x), x > 0 asin(x) = x * Rc(1-x^2, 1), |x|<= 1 acos(x) = sqrt(1-x^2)*Rc(x^2,1), 0 <= x <=1 atan(x) = x * Rc(1,1+x^2) asinh(x) = x * Rc(1+x^2,1) acosh(x) = sqrt(x^2-1) * Rc(x^2,1), x >= 1 atanh(x) = x * Rc(1,1-x^2), |x|<=1
Last modified 14 years ago
Last modified on 03/14/11 13:08:47