Carlson Rj
(carlson-rj x y z p)
Carlson's Rj is defined by
Rj(x,y,z,p) = integrate(3/2*(t+x)^(-1/2)*(t+y)^(-1/2)*(t+z)^(-1/2)*(t+p)^(-1), t, 0, inf)
It is related to the elliptic integral of the third kind by
P(phi,k,n) = integrate((1+n*sin(t)^2)^(-1)*(1-k^2*sin(t)^2)^(-1/2), t, 0, phi) = sin(phi)*Rf(cos(phi)^2, 1-k^2*sin(phi)^2, 1) - (n/3)*sin(phi)^3*Rj(cos(phi)^2, 1-k^2*sin(phi)^2, 1, 1+n*sin(phi)^2)
Note that Carlson's definition of the integrals has the opposite sign for the parameter n compared to the definition given by A&S.
Last modified 14 years ago
Last modified on 03/14/11 13:23:17