Elliptic Theta Functions
Introduction
All of the elliptic theta functions are functions of two parameters:
the argument z and a second argument. For these routines the
second argument is the nome q, |q| < 1
. Some references
use the the lattice parameter tau, with the imaginary part of
tau strictly positive.
The nome and lattice parameter are related by q = exp(%i*%pi*tau)
.
Theta 1
(elliptic-theta-1 z q)
First theta function defined by
theta1(z, q) = 2*q^(1/4)*sum((-1)^n*q^(n*(n+1))*sin((2*n+1)*z), n, 0, inf)
Theta 2
(elliptic-theta-2 z q)
Second theta function defined by
theta2(z, q) = 2*q^(1/4)*sum(q^(n*(n+1))*cos((2*n+1)*z), n, 0, inf)
Theta 3
(elliptic-theta-3 z q)
Third theta function defined by
theta3(z, q) = 1 + 2 * sum(q^(n^2)*cos(2*n*z), n, 1, inf)
Theta 4
(elliptic-theta-4 z q)
Fourth theta function defined by
theta4(z, q) = 1 + 2*sum((-1)^n*q^(n^2)*cos(2*n*z), n, 1, inf)
Miscellaneous
(elliptic-theta n z q)
- Convenience function where n is 1, 2, 3, or 4 for one of the four theta functions
(elliptic-nome m)
- Compute the nome q from the parameter m.
References
Last modified 14 years ago
Last modified on 03/15/11 13:38:48